树的剪枝(pruning)算法

本文探讨了决策树的剪枝算法,旨在减少过拟合。算法通过计算每个节点的经验熵,然后从叶节点向上回缩,依据损失函数的变化决定是否剪枝。策略主要关注最小化整体损失函数,以实现更优的模型泛化能力。
摘要由CSDN通过智能技术生成

算法:

输入:生成算法产生的整个树 T ,参数 α
输出:修剪后的子树 Tα .
(1) 计算每个结点的经验熵。
(2) 递归地从树的叶节点向上回缩。
设一组叶结点回缩到其父结点之前与之后的整体树分别为 TB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值