信息增益(比)的算法

本文介绍了信息增益和信息增益比的概念,详细阐述了如何计算这两个值在训练数据集上的应用。通过算法步骤,解释了如何使用它们进行特征选择,以提高决策树等模型的构建效率。
摘要由CSDN通过智能技术生成

算法:

输入:训练数据集 D 和特征 A ;
输出:特征 A 对训练数据集 D 的信息增益 g(D,A)
(1) 计算数据集 D 的经验熵 H(D)

H(D)=k=1K
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值