CART生成算法

算法:

输入:训练数据集 D ,停止计算的条件;
输出:CART 决策树。
根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构造二叉决策树:
(1) 设结点的训练数据集为 D ,计算现有特征对该数据集的基尼指数。此时,对每一个特征 A,对其可能取得每个值 a ,根据样本点对 A=a 的测试为“是”或“否”将 D 分割成 D1 D2 两部分,计算 A=a 时的基尼指数。
(2) 在所有可能的特征 A 以及他们所有可能的切分点 a 中,选择基尼指数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。
(3) 对两个子结点递归地调用(1),(2),直至满足停止条件。
(4) 生成 CART 决策树。

一些说明:

基尼指数:

样本集合 D 的基尼指数

Gini(D)=1k=1K(|Ck||D|)2

特征 A 条件下集合 D 的基尼指数:

Gini(D,A)=|D1||D|Gini(D1)+|D2||D|Gini(D2)

算法停止条件:

  1. 结点中的样本个数小于预订阈值
  2. 样本集的基尼指数小于预定阈值
  3. 没有更多特征
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的 CART 决策树生成算法的 Python 代码实现: ```python from collections import Counter import numpy as np class Node: def __init__(self, feature=None, threshold=None, left=None, right=None, label=None): self.feature = feature # 用于分割的特征 self.threshold = threshold # 分割特征的阈值 self.left = left # 左子树 self.right = right # 右子树 self.label = label # 叶节点的类别 class CART: def __init__(self, max_depth=5, min_samples_split=2): self.max_depth = max_depth # 树的最大深度 self.min_samples_split = min_samples_split # 最小分裂样本数 # 计算基尼不纯度 def gini(self, y): _, counts = np.unique(y, return_counts=True) probs = counts / len(y) return 1 - np.sum(probs ** 2) # 计算加权基尼不纯度 def weighted_gini(self, y_left, y_right): n_left, n_right = len(y_left), len(y_right) gini_left, gini_right = self.gini(y_left), self.gini(y_right) return (n_left * gini_left + n_right * gini_right) / (n_left + n_right) # 寻找最优的分割点 def find_best_split(self, X, y): best_feature, best_threshold, best_gini = None, None, np.inf for feature in range(X.shape[1]): thresholds = np.unique(X[:, feature]) for threshold in thresholds: left_indices = X[:, feature] < threshold right_indices = X[:, feature] >= threshold if len(y[left_indices]) >= self.min_samples_split and len(y[right_indices]) >= self.min_samples_split: gini = self.weighted_gini(y[left_indices], y[right_indices]) if gini < best_gini: best_feature, best_threshold, best_gini = feature, threshold, gini return best_feature, best_threshold, best_gini # 递归构建决策树 def build_tree(self, X, y, depth): if depth == self.max_depth or len(y) < self.min_samples_split or len(set(y)) == 1: label = Counter(y).most_common(1)[0][0] return Node(label=label) feature, threshold, gini = self.find_best_split(X, y) left_indices = X[:, feature] < threshold right_indices = X[:, feature] >= threshold left = self.build_tree(X[left_indices], y[left_indices], depth + 1) right = self.build_tree(X[right_indices], y[right_indices], depth + 1) return Node(feature=feature, threshold=threshold, left=left, right=right) # 训练决策树 def fit(self, X, y): self.root = self.build_tree(X, y, 0) # 预测单个样本 def predict_one(self, x): node = self.root while node.label is None: if x[node.feature] < node.threshold: node = node.left else: node = node.right return node.label # 批量预测 def predict(self, X): return np.array([self.predict_one(x) for x in X]) ``` 使用示例: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X, y = iris.data, iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练决策树模型 model = CART(max_depth=5, min_samples_split=2) model.fit(X_train, y_train) # 预测测试集 y_pred = model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值