火烫火烫的
码龄11年
关注
提问 私信
  • 博客:298,000
    298,000
    总访问量
  • 52
    原创
  • 407,161
    排名
  • 719
    粉丝
  • 1
    铁粉

个人简介:https://github.com/FlameCharmander/MachineLearning 求赞,谢谢!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:英国
  • 加入CSDN时间: 2014-05-02
博客简介:

一起来书写我们的青春

博客描述:
角声寒 夜阑珊 怕人寻问 咽泪装欢
查看详细资料
个人成就
  • 获得245次点赞
  • 内容获得179次评论
  • 获得930次收藏
  • 代码片获得468次分享
创作历程
  • 3篇
    2020年
  • 12篇
    2019年
  • 6篇
    2018年
  • 28篇
    2017年
  • 3篇
    2015年
成就勋章
TA的专栏
  • 数据结构
    11篇
  • 机器学习
    15篇
  • 算法导论
    1篇
  • 深度学习
    15篇
兴趣领域 设置
  • 人工智能
    nlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【Python】问题小记录

前言在使用Map对str批量数据转换只收,直接使用np.argmax得到的索引值是有问题的。问题可简化为如下代码。先记录,等空了探究。np.argmax([0, 1, 2, 3, 4])结果:4a = "1 2 3 4 5"np.argmax(map(float, a))结果:0...
原创
发布博客 2020.03.20 ·
300 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【自然语言处理】谣言检测小结

前言博主最近研究了下Ma Jing博士的谣言检测。现将她的一些文章进行一些总结。内容第一篇《Detect Rumors Using Time Series of Social Context Information on Microblogging Websites》由于谣言检测模型只是对用户信息,模式传播和文本内容进行建模,忽略了时间的变化这一信息。作者提出了一种DSTS模型。第二篇《...
原创
发布博客 2020.01.24 ·
6434 阅读 ·
5 点赞 ·
7 评论 ·
49 收藏

【自然语言处理】使用Tensorflow-Bert进行分类任务时输出每个Train Epoch的信息

前言最近任务需要用到Bert,一个头疼的地方是官方代码只有在跑完指定的epoch次数之后才进行评估。可是基于任务的要求,需要输出每轮的评估信息(比如Acc, Loss)。相似的需求类似:How to get a total training set loss for an epoch using Tensorflow Estimator api方法由于Bert在Tensorflow使用了E...
原创
发布博客 2020.01.10 ·
3724 阅读 ·
1 点赞 ·
6 评论 ·
9 收藏

【自然语言处理】tf.contrib.seq2seq.GreedyEmbeddingHelper源码解析

前言本文衔接TrainingHelper,也可以衔接BasicDecoder。先说明一下,GreedyEmbeddingHelper主要作用是接收开始符,然后生成指定长度大小的句子。正文GreedyEmbeddingHelper代码传送门class GreedyEmbeddingHelper(Helper): """A helper for use during inference....
原创
发布博客 2019.08.12 ·
2704 阅读 ·
2 点赞 ·
2 评论 ·
6 收藏

【自然语言处理】tf.contrib.seq2seq.TrainingHelper源码解析

前言本文衔接tf.contrib.seq2seq.dynamic_decode源码分析以及tf.contrib.seq2seq.BasicDecoder源码解析。除了TrainingHelper后面还会介绍到GreedyEmbeddingHelper
原创
发布博客 2019.08.12 ·
3574 阅读 ·
3 点赞 ·
1 评论 ·
5 收藏

【自然语言处理】聊聊注意力机制(Attention Mechanism)的发展

前言其实,关于注意力机制的文章真的有很多,而且写得相当精彩(毕竟过去这么多年了),那这篇侧重于简单的一个介绍,使大家对注意力机制有个初步了解。正文首先这件事还要从序列到序列模型(Seq2seq Model)开始说起,最早的序列到序列模型是一个CNN+LSTM。简单来说就是把CNN把编码端映射成一个固定向量,然后用LSTM一步步解码。接着一个自然的想法是使用LSTM,因为LSTM的处理序列...
原创
发布博客 2019.08.08 ·
4203 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

【自然语言处理】聊聊曝光误差(Exposure Bias)怎么被解决的

前言曝光误差(exposure bias)简单来讲是因为文本生成在训练和推断时的不一致造成的。不一致体现在推断和训练时使用的输入不同,在训练时输入是真实样本,但是在推断时用的却是上一个词的输出。解决方案1.使用scheduled-sampling,简单的做法就是在训练阶段使用的输入以p的概率选择真实样本,以1-p的概率选择上一个词的输出。而这个概率p是随着训练次数的增加衰减,可以使用指数函数...
原创
发布博客 2019.08.05 ·
11438 阅读 ·
13 点赞 ·
0 评论 ·
22 收藏

【自然语言处理】tf.contrib.seq2seq.BasicDecoder源码解析

前言tf.contrib.seq2seq.dynamic_decode源码分析本文衔接上文。首先tf.contrib.seq2seq.dynamic_decode主要作用是接收一个Decoder类,然后依据Encoder进行解码,实现序列的生成(映射)。其中,这个函数主要的一个思想是一步一步地调用Decoder的step函数(该函数接收当前的输入和隐层状态会生成下一个词),实现最后的一句话的...
原创
发布博客 2019.06.11 ·
5702 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【自然语言处理】tf.contrib.seq2seq.dynamic_decode源码分析

前段时间因为自己的任务,看了好久的seq2seq的源码,了解了它的内部机制。现分享一波源码解析给大家以共勉。首先tf.contrib.seq2seq.dynamic_decode主要作用是接收一个Decoder类,然后依据Encoder进行解码,实现序列的生成(映射)。其中,这个函数主要的一个思想是一步一步地调用Decoder的step函数(该函数接收当前的输入和隐层状态会生成下一个词),实现最后的一句话的生成。该函数类似tf.nn.dynamic_rnn。
原创
发布博客 2019.06.02 ·
8563 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

【自然语言处理】SeqGAN的探索(踩坑)记录

SeqGAN是2017年[《SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient》](https://arxiv.org/pdf/1609.05473.pdf)这篇论文提出的模型,使用了强化学习的策略梯度解决了之前GAN只能应用在生成器输出为连续值的问题(文本中词与词之间的表示是离散的)。属于比较开创的工作,之后的许多工作都是在这篇文章的基础进行的。今天主要是想研究SeqGAN这么久以来的一个踩坑记录的总结,主要是要讨论关于蒙特
原创
发布博客 2019.05.31 ·
5311 阅读 ·
1 点赞 ·
5 评论 ·
9 收藏

【自然语言处理】神经文本生成综述

前言首先本文主要是对《 Neural Text Generation: Past, Present and Beyond 》这篇论文的总结,该论文是上海交通大学团队写的,查阅过数次,觉得写得很棒,在此总结一下,以此共勉。要点这篇的文章关注点在于神经网络的文本生成。极大似然估计首先,最开始的是用神经网络语言模型(NNLM)。以及的后来的RNNLM(基于RNN循环神经网络)。P(xt∣st...
原创
发布博客 2019.05.23 ·
3924 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

【统计学习方法】 支持向量机(SVM) Python实现

支持向量机,一个理论先于实践的产物,由Corinna Cortes和Vapnik等在1995年首次提出的,取得了非常好的效果。 SVM分为线性可分(又可分硬间隔与软间隔)和线性不可分的问题,线性不可分可通过核函数进行映射到空间里,从而线性可分。线性可分支持向量机模型:f(x)=sign(w⋅x+b)f(x)=sign(w⋅x+b)f\left( x \right) = sign\le...
原创
发布博客 2019.05.23 ·
2949 阅读 ·
2 点赞 ·
4 评论 ·
14 收藏

【统计学习方法】 逻辑斯谛回归(Logistic Regression) Python实现

代码可在Github上下载:[代码下载](https://github.com/FlameCharmander/MachineLearning)今天看了一下《统计学习方法》里的逻辑斯谛回归,结合下《机器学习实战》里面的代码,很精炼。公式如下:模型:> $P(Y=1|x)=\frac {exp(w\cdot x+b)}{1+exp(w\cdot x+b)}$> $P(Y=0|x)=1-P(Y=1|x)=\frac {1}{1+exp(w\cdot x+b)}$策略:对数损失函数算法:梯度下降算法
原创
发布博客 2019.05.22 ·
3727 阅读 ·
5 点赞 ·
2 评论 ·
14 收藏

《统计学习方法》 决策树 ID3和C4.5 生成算法 Python实现

在博主刚接触编程的时候,曾经想过一个如何实现聊天机器人,当时最直接的想法是打算用if-else来做(事实上真用VB实现了一个简单的以自嗨)。而今天的决策树就是可以视为一种if-else的集合。而决策树的可以用来分类也可以用来完成回归任务。本部分介绍的决策树实现了ID3和C4.5算法。两者算法差别在于一个使用了信息增益一个使用了信息增益比。
原创
发布博客 2019.05.17 ·
5127 阅读 ·
2 点赞 ·
5 评论 ·
17 收藏

【自然语言处理】基于双向LSTM(Bi-LSTM)文本分类的Tensorflow实现

Github:Github下载地址RNN在自然语言处理的文本处理上取得了很大的成功。双向LSTM可以捕获上下文的内容,从而使得分类效果更佳。在本文的这次分类中,本文使用了IMDB电影评价的数据集,最终的模型可以将正面情感和负面情感通过双向LSTM给分类出来。
原创
发布博客 2019.02.25 ·
8356 阅读 ·
3 点赞 ·
5 评论 ·
36 收藏

【深度学习】基于GAN生成对抗网络的Python实现

前言此文参考原文Github代码本文Github代码GAN是2014年提出的一个框架。简单来说,这个框架有一个生成器和一个判别器,生成器生成数据(假币),判别器判别数据真假(判别假币),基于这种max-min极大极小值博弈算法,最终生成器生成的数据(假币)会使判别器分辨不出,也就是说D(p_data)和D(p_gen_data)均在0.5左右。基于这一框架生成器得到了出色的生成效果引起了许多...
原创
发布博客 2018.12.14 ·
17605 阅读 ·
18 点赞 ·
4 评论 ·
129 收藏

【自然语言处理】LSTM文本生成Python(纯Numpy)实现

前言RNN存在着梯度消失的问题,Hochreiter & Schmidhuber (1997)在1997年提出了LSTM(Long Short-Term Memory)长短期记忆单元来解决这个问题,现在自然语言处理的大部分任务都用到了LSTM,例如机器翻译,文本生成,,同理还有GRU。数据集数据集跟上一篇博客RNN文本生成使用的一样,都是古诗的语料库,这里不再赘述。...
原创
发布博客 2018.05.28 ·
6896 阅读 ·
0 点赞 ·
2 评论 ·
26 收藏

【自然语言处理】RNN文本生成Python(纯Numpy)实现

前言由于RNN具有记忆功能,之前文章有介绍RNN来实现二进制相加,并取得了比较好的效果。那这次本文使用RNN来进行古诗生成。数据集数据集就是我们的古诗了,每行都是一首古诗,并且以格式”题目:古诗”。 首先需要创建一个词典,词典可以是每个字的词频高的前6000字作为词典,然后用one-hot来表示词向量。def getVocab(filename='poetry.txt'):...
原创
发布博客 2018.05.26 ·
7355 阅读 ·
6 点赞 ·
5 评论 ·
40 收藏

【机器学习】Softmax回归 Python实现

前言常常会遇到需要多分类的问题,比如手写体识别,你需要识别手写的数字是几(0~9),比如文本生成,你需要知道生成的是哪个字,都需要进行多分类。那么我们最常用的多分类函数就是softmax了。接下来本文将会实现一个softmax来进行手写体识别。数据集本次的数据集分为训练集:文件名为”trainingDigits”和测试集:文件名为”testDigits”,每个文件夹里面有txt文件若干...
原创
发布博客 2018.05.24 ·
15118 阅读 ·
6 点赞 ·
17 评论 ·
77 收藏

【统计学习方法】隐马尔可夫模型(HMM) Python实现

前言隐马尔可夫模型在自然语言处理等各领域中,经常被用来处理标注问题。 隐马尔可夫模型由初始状态概率向量ππ\pi 、状态转移概率矩阵A和观测概率矩阵B决定。其中ππ\pi和A决定状态序列,B决定观测序列。 λ=(A,B,π)λ=(A,B,π)\lambda=(A,B,\pi) A=[aij]N×NA=[aij]N×N{\rm{A = }}{\left[ {{a_{ij}}}...
原创
发布博客 2018.05.04 ·
4841 阅读 ·
3 点赞 ·
0 评论 ·
36 收藏
加载更多