Geogebra中级篇003—几何对象之点与向量

本文概述了在GeoGebra中如何使用笛卡尔或极坐标系输入点和向量。用户可以通过指令栏输入数字和角度,使用工具或指令创建点和向量。在笛卡尔坐标系中,示例如“P=(1,0)”;在极坐标系中,示例如“P=(1;0)”或“v=(5;90°)”。文章还介绍了点和向量的运算,如中点计算和向量模的求解,以及向量积的应用。(欢迎关注微信公众号“第五智能”,免费查阅本系列所有文章)

一、点和向量

在数学中,点和向量是基本的几何概念,用于描述空间中的位置和方向。

1. 点

点是几何空间中的基本元素之一,用来表示特定位置或位置的集合。在笛卡尔坐标系中,点可以用一对有序数对 (x,y)(x,y) 来表示,其中 xx
表示点在 x 轴上的坐标,yy 表示点在 y 轴上的坐标;例如,点 A可以表示为 A=(1,2)。在极坐标系中,点由极径r 和极角 θ 描述,例如,P=(1,45∘) 表示到原点距离为1,与正 x 轴夹角为45度的点。

2. 向量

向量是具有大小和方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值