初次用R的实际案例数据分析

本文介绍了使用R语言进行商务数据分析的案例,包括数据预处理、描述性统计分析和方差分析。通过对非学位职业培训机构学员数据的处理,探讨了性别、出生日期、企业性质和最高学历等因素对学习效果的影响。
摘要由CSDN通过智能技术生成

这是一次教授布置的期末作业,也是书籍《商务数据分析与应用》的一个课后作业

目录

数据描述

数据预处理

描述性统计分析

模型分析(方差分析)

数据描述

非学位职业培训机构的178个学员的数据,目的是了解什么样的学员可能获得更好的学习效果

数据预处理

打开数据,查看一部分数据并锁定数据(这样之后可以直接使用变量名而不用$来指定数据)

grades=read.table('E:/SWlearning/R/assighment/RegressionAnalysis/Report/ins1.csv',
        header=TRUE,sep=',')
head(grades)
attach(grades)



结果显示
1735913-20190708012514121-2111444166.jpg



将变量名改成英文

names(grades)=c('aveGrades','gender','birth','firmType','eduBG','eduGrd')



响应变量(因变量):因变量.平均成绩(aveGrades)
自变量:性别(gender),出生日期(birth),企业性质(firmType),最高学历(eduBG),最高学历毕业时间(eduGrd)


检查相应变量的正态性

shapiro.test(aveGrades)



结果显示

        Shapiro-Wilk normality test

data:  aveGrades
W = 0.89736, p-value = 9.286e-10



p值非常的小故拒绝原假设,即拒绝数据是正态分布的原假设


接下来用BoxCox的方法,建立新的相应变量从而保证其正态性,注意BoxCox.ar是包TSA里的函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值