蓝桥杯题目---蓝桥骑士(寻找逐渐递增的子序列 最多个数)

题目描述
小明是蓝桥王国的骑士,他喜欢不断突破自我。

这天蓝桥国王给他安排了 N 个对手,他们的战力值分别为 a_1,a_2,…,a_n,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战,也可以选择避战。

身为高傲的骑士,小明从不走回头路,且只愿意挑战战力值越来越高的对手。

请你算算小明最多会挑战多少名对手。

输入描述
输入第一行包含一个整数 N,表示对手的个数。

第二行包含 N 个整数 a_1,a_2,…,a_n分别表示对手的战力值。

输出描述
输出仅一行包含一个整数表示答案。

样例输入
6
1 4 2 2 5 6
样例输出
4

状态方程:dp[ i ] 以第i个数结尾的最长子序列长度
dp改变的要求最长子序列 且 战力值大于之前

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
const int N = 10001;
int a[N],dp
### 关于蓝桥杯竞赛中的Java子序列题目 在准备蓝桥杯竞赛的过程中,针对特定类型的算法问题如子序列问题,考生通常会遇到一系列挑战。这些问题不仅考察基本的数据结构理解能力,还深入检验了解决复杂逻辑的能力。 #### 子序列定义及其重要性 子序列是指从给定序列中删除若干元素(可以不连续),而不改变剩余元素顺序所得到的新序列。这类问题经常出现在编程比赛中,因为它们能够很好地评估参赛者的动态规划和回溯法掌握程度[^1]。 #### 常见的子序列题目类型 对于蓝桥杯而言,常见的子序列题目包括但不限于最长公共子序列(LCS),最大上升/下降子序列等问题。这些题目往往需要运用到动态规划的思想来求解最优解,并且有时还需要考虑空间优化技巧以满足严格的时空限制条件[^2]。 #### 示例:寻找两个字符串之间的最长公共子序列 (LCS) ```java public class LCS { public static void main(String[] args) { String text1 = "abcde"; String text2 = "ace"; System.out.println(longestCommonSubsequence(text1, text2)); } private static int longestCommonSubsequence(String s1, String s2){ char[] chars1 = s1.toCharArray(); char[] chars2 = s2.toCharArray(); int[][] dp = new int[s1.length() + 1][s2.length() + 1]; for(int i = 1 ;i <= s1.length(); ++i){ for(int j = 1;j<=s2.length();++j){ if(chars1[i-1]==chars2[j-1]){ dp[i][j]=dp[i-1][j-1]+1; }else{ dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]); } } } return dp[s1.length()][s2.length()]; } } ``` 此代码实现了计算两个输入字符串之间最长公共子序列长度的功能。通过构建二维数组`dp`存储中间状态,最终返回的结果即为所需的最大值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值