区块链前史

博客讲述了加密货币的历史,从黑客文化的兴起,到极客和创客的创新精神,再到赛博朋克对未来的设想。文章提到了1980年代的加密尝试,如David Chaum的DigiCash,以及后来的hashCash和B-money,最终在2008年比特币的诞生标志着加密货币新时代的开始。
摘要由CSDN通过智能技术生成

黑客-极客-骇客

黑客:推动时代进步的人

热衷编程,信仰自由和分权的黑客文化,积极投身开源文化和开源软件开发。往往遵从黑客伦理和严格的自由/开源软件原则。

极客:时尚界的弄潮儿

酷是最本质的属性,一切都是为了酷这个目标,有时可以为了技术而技术,也就是为了“秀”

创客:DIY的领跑者

更加突出创意和对生活的态度。

一般比较”懒“,这个”懒“的意思是为了简化生活的某些方面而用机器人或者其他开源硬件来替代

赛博朋克:

是科幻小说的一个分支,以计算机或信息技术为主题,小说中通常有社会秩序受破坏的情节。

赛博朋克作品写作的目的是号召人们来改变社会

加密货币有着悠久和深厚的历史

第一个已知的对加密货币的尝试发生在荷兰,1980——在1980年代末,比比特币早上20至25年

早在1983年或在比特币出现的25年前,David Chaum就已发明了炫目的公式,用于网络加密。它允许一个人发送一串数字到另一个人,而且这个数字可被接收方所修改。后来,David Chaum迁移到荷兰,荷兰成了密码学和数学研究的温床。后来,因为违反了中央银行(荷兰中央银行)的规定,他们同意DigiCash 的产品只能卖给银行。

但其最终在1998年破产。、

1990年代中期,在两个因素的影响下,注意力从欧洲转移到了北美:Netscape的上市引起了大量风投机构的兴趣和欧洲对数字现金开始了第一波监管:1994年欧盟对预付费卡的报告演变成了对DigiCash的反对。

1997年,Adam back发明了hashCash,来解决邮件系统中Dos攻击问题。hashCash首次提出用PoW机制来获取额度。

1998年,wei Dai提出了B-money,将pow引入到数字货币中,并实现了去中心化

2008年的时候,中本聪发表白皮书。然后比特币诞生。


















深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值