Doris(原Apache Doris)作为一款高性能、实时的MPP(大规模并行处理)分析型数据库,在Java开发中常用于以下场景,结合其 高并发查询、实时分析、易扩展 的特性,以下是典型应用场景及代码示例:
1. 实时数据分析与报表
场景特点
- 需要低延迟(秒级)响应复杂查询。
- 支持高并发(如千人同时查看报表)。
Java实现示例
// 使用JDBC连接Doris
public class DorisJdbcDemo {
public static void main(String[] args) {
String url = "jdbc:mysql://fe_host:9030/database";
String user = "user";
String password = "password";
try (Connection conn = DriverManager.getConnection(url, user, password)) {
String sql = "SELECT user_id, SUM(order_amount) FROM orders " +
"WHERE dt >= '2023-01-01' GROUP BY user_id";
PreparedStatement stmt = conn.prepareStatement(sql);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
System.out.println(rs.getLong(1) + ": " + rs.getDouble(2));
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
优化点:
- 利用Doris的 预聚合模型(Aggregate Key) 加速SUM/COUNT查询。
- 通过 分区裁剪(Partition Pruning)减少扫描数据量。
2. 用户行为日志分析
场景特点
- 海量日志数据(每日TB级)的实时写入与查询。
- 需快速分析用户点击流、转化漏斗。
Java代码(批量写入)
// 使用Stream Load API高速导入数据(JSON格式)
public class DorisStreamLoadDemo {
public static void main(String[] args) throws IOException {
String url = "http://fe_host:8030/api/database/table/_stream_load";
String auth = "Basic " + Base64.encode("user:password".getBytes());
String jsonData = "[{\"user_id\":101, \"action\":\"click\", \"time\":\"2023-10-01 12:00:00\"}]";
HttpRequest request = HttpRequest.post(url)
.header("Authorization", auth)
.header("format", "json")
.header("strip_outer_array", "true")
.send(jsonData);
HttpResponse response = request.response();
System.out.println(response.body());
}
}
优势:
- Stream Load支持 每秒10万级 写入吞吐。
- 数据立即可查,适合实时分析场景。
3. 统一数仓服务
场景特点
- 替代Hive/Spark的慢速批处理,提供亚秒级响应。
- 与Flink/Kafka集成实现实时数仓。
Java + Flink集成
// Flink SQL通过JDBC Sink写入Doris
EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
TableEnvironment tableEnv = TableEnvironment.create(settings);
String sinkDDL = "CREATE TABLE doris_sink (" +
" user_id BIGINT," +
" behavior STRING" +
") WITH (" +
" 'connector' = 'jdbc'," +
" 'url' = 'jdbc:mysql://fe_host:9030/database'," +
" 'table-name' = 'user_behavior'," +
" 'username' = 'user'," +
" 'password' = 'password'" +
")";
tableEnv.executeSql(sinkDDL);
tableEnv.executeSql("INSERT INTO doris_sink SELECT user_id, action FROM kafka_source");
4. 实时监控与告警
场景特点
- 处理IoT设备/metrics数据,实时计算指标(如PV/UV)。
- 阈值触发告警(如QPS突降)。
Java + Spring Boot示例
@RestController
public class AlertController {
@Autowired
private JdbcTemplate jdbcTemplate;
@GetMapping("/check_alert")
public String checkAlert() {
String sql = "SELECT COUNT(*) FROM metrics " +
"WHERE error_rate > 0.1 AND time > NOW() - INTERVAL 5 MINUTE";
int count = jdbcTemplate.queryForObject(sql, Integer.class);
return count > 0 ? "触发告警!" : "正常";
}
}
Doris优化:
- 使用 Rollup表 预计算关键指标。
- 倒排索引 加速WHERE条件过滤。
5. 电商多维分析
场景特点
- 复杂维度组合查询(如地区×品类×时间)。
- 需快速响应钻取(Drill-down)查询。
Java代码(OLAP查询)
// 利用Doris的Colocation Group优化关联查询
String sql = "SELECT p.category, c.city, SUM(o.amount) " +
"FROM orders o " +
"JOIN products p ON o.product_id = p.id " +
"JOIN customers c ON o.user_id = c.id " +
"WHERE o.dt = '2023-10-01' " +
"GROUP BY GROUPING SETS ((p.category, c.city), (p.category))";
Doris特性:
- Colocation Group 将关联表物理共置,减少Shuffle开销。
- CBO优化器 自动选择最优执行计划。
技术选型对比
场景 | Doris优势 | 替代方案 |
---|---|---|
实时报表 | 高并发+低延迟 | MySQL(性能不足) |
日志分析 | 高效压缩列存+向量化引擎 | Elasticsearch(成本高) |
实时数仓 | 支持更新(Unique Key模型) | HBase(无SQL支持) |
最佳实践
- 建模优化:
- 高频查询字段设为 Short Key 前缀。
- 时间字段必设 分区键(Partition Key)。
- Java调优:
- 使用连接池(如HikariCP)管理JDBC连接。
- 批写入时开启 Stream Load的事务模式。
- 监控:
- 通过Doris的FE Metrics API采集指标(如
http://fe_host:8030/metrics
)。
- 通过Doris的FE Metrics API采集指标(如
通过以上场景,Doris在Java生态中能显著提升实时数据分析效率,尤其适合替换传统“Hadoop+MySQL”混合架构中的复杂环节。