【狄克特斯拉算法验证】

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/First_Blood_2016/article/details/53332640
#include <stdio.h>
#include "graph.h"
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点
{
    int k;
    k=path[i];
    if (k==v)  return;          //找到了起点则返回
    Ppath(path,k,v);            //找顶点k的前一个顶点
    printf("%d,",k);            //输出顶点k
}
void Dispath(int dist[],int path[],int s[],int n,int v)
{
    int i;
    for (i=0; i<n; i++)
        if (s[i]==1)
        {
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);
            printf("%d,",v);    //输出路径上的起点
            Ppath(path,i,v);    //输出路径上的中间点
            printf("%d\n",i);   //输出路径上的终点
        }
        else  printf("从%d到%d不存在路径\n",v,i);
}
void Dijkstra(MGraph g,int v)  //狄克斯特拉算法
{
    int dist[MAXV],path[MAXV];
    int s[MAXV];
    int mindis,i,j,u;
    for(i=0;i<g.n;i++)
    {
        dist[i]=g.edges[v][i];   //距离初始化
        s[i]=0;    //s[]置空
        if(g.edges[v][i]<INF)     //路径初始化
            path[i]=v;            //顶点v到顶点i有边时,置顶点i的前一个顶点为v
        else
            path[i]=-1;              //顶点v到顶点i有边时,置顶点i的前一个顶点为-1
    }
    s[v]=1;path[v]=0;       //源点编号v放入s中
    for(i=0;i<g.n;i++)          //循环直到所有顶点的最短路劲都求出
    {
        mindis=INF;           //mindis置最小长度初值
        for(j=0;j<g.n;j++)      //选取不在s中且具有最小距离的顶点u
            if(s[j]==0 && dist[j]<mindis)
            {
                u=j;
                mindis=dist[j];
            }
        s[u]=1;       //顶点u加入s中
        for(j=0;j<g.n;j++)     //修改不在s中的顶点的距离
            if(s[j]==0)
                if(g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])
                {
                    dist[j]=dist[u]+g.edges[u][j];
                    path[j]=u;
                }
    }
    Dispath(dist,path,s,g.n,v);    //输出最短路径
}




int main()
{
    MGraph g;
    int A[6][6]=
    {
        {0,50,10,INF,45,INF},
        {INF,0,15,INF,5,INF},
        {20,INF,0,15,INF,INF},
        {INF,20,INF,0,35,INF},
        {INF,INF,INF,30,0,INF},
        {INF,INF,INF,3,INF,0}
    };
    ArrayToMat(A[0],6,g);
    Dijkstra(g,1);
    return 0;
}

头文件——图基本算法库

运行结果:


展开阅读全文

没有更多推荐了,返回首页