''' 对于线性规划问题,采用scipy.optimize.linprog()方法求解 scipy.optimize.linprog(c,A,b,Aeq,beq,bounds=bounds) c:目标函数系数向量,min形式 A:<=型约束形成的系数矩阵(≥型约束要化为≤型约束),单个约束也要表示成二位形式!!! b:<=型约束的右边常数向量 Aeq:等式约束系数矩阵,单个约束也要表示成二维形式!!! beq:等式约束右边常数向量 bounds: [[a,b],[]..]二维列表格式,n行2列的矩阵,n行指n个决策变量,2列指下限上限 ''' 例子:求解下列线性规划问题 from scipy import optimize c=[-2,-3,5] A=[[-2,5,-1],[1,3,1]] b=[-10,12] Aeq=[[1,1,1]] beq=[7] bounds=[[0,None],[0,None],[0,None]] result= optimize.linprog(c, A, b, Aeq, beq, bounds=bounds) print(result)