利用scipy.optimize.linprog()方法求解线性规划问题

'''
对于线性规划问题,采用scipy.optimize.linprog()方法求解
scipy.optimize.linprog(c,A,b,Aeq,beq,bounds=bounds)
c:目标函数系数向量,min形式
A:<=型约束形成的系数矩阵(≥型约束要化为≤型约束),单个约束也要表示成二位形式!!!
b:<=型约束的右边常数向量
Aeq:等式约束系数矩阵,单个约束也要表示成二维形式!!!
beq:等式约束右边常数向量
bounds: [[a,b],[]..]二维列表格式,n行2列的矩阵,n行指n个决策变量,2列指下限上限
'''
例子:求解下列线性规划问题

from scipy import optimize
c=[-2,-3,5]
A=[[-2,5,-1],[1,3,1]]
b=[-10,12]
Aeq=[[1,1,1]]
beq=[7]
bounds=[[0,None],[0,None],[0,None]]
result= optimize.linprog(c, A, b, Aeq, beq, bounds=bounds)
print(result)

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值