利用scipy.optimize.minimize()求解有约束、非线性规划问题

文章介绍了如何利用scipy.optimize.minimize函数来解决非线性规划问题,包括设置目标函数、定义约束条件(不等式)和变量的上下界,并给出了一个具体的示例,展示了如何构造和求解一个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

'''
scipy.optimize.minimize(目标函数obj,初始点,constraints=cons,bounds=bd)此函数有很多参数,这里介绍主要参数
obj:目标函数,最小值形式,常用lambda函数进行构造
bounds: [[a,b],[]..]二维列表格式,n行2列的矩阵,n行指n个决策变量,2列指下限上限
        也可以转化成constraint
constraint: 约束,{'type':'ineq/eq‘,'fun':lambda x:}字典格式,fun默认>/≥/=形式
            如果一个非线性规划问题既有等式约束、又有不等式约束,可分别构造cons1,cons2。然后合并con=[cons1,cons2]
            线性/非线性
'''
例子:求解下列有约束、非线性 规划问题。

from scipy import optimize
#构造目标函数obj,最小化形式
obj=lambda x:(x[0]-1)**2+(x[1]-2.5)**2
#构造约束条件cons,≥形式
cons=[{'type':'ineq','fun':lambda x:x[0]-x[1]*2+2},
      {'type':'ineq','fun':lambda x:-x[0]-x[1]*2+6},
      {'type':'ineq','fun':lambda x:-x[0]+x[1]*2+2}
      ]
#变量上下限值bounds
bounds=[[0,None],[0,None]]
#初始解x0
x0=[0,0]
result = optimize.minimize(obj, x0, constraints=cons, bounds=bounds)
print(result)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值