「LibreOJ NOI Round #1」接竹竿 (dp+前缀和优化)

https://loj.ac/problem/507

题目描述

一天,神犇和 LCR 在玩扑克牌。他们玩的是一种叫做“接竹竿”的游戏。
游戏规则是:一共有 n 张牌,每张牌上有一个花色 c 和一个点数 v,花色不超过 k 种。将这些牌依次放入一列牌的末端。若放入之前这列牌中已有与这张牌花色相同的牌,你可以选择将这张牌和任意一张花色相同的牌之间的所有牌全部取出队列(包括这两张牌本身),并得到与取出的所有牌点数和相同的分数。现在已知 LCR 把这 n 张牌放入队列的顺序,求她最多能得多少分。
输入顺序即为 LCR 放入队列的顺序。即,ci​​ 表示第 i 张放入的牌的花色,vi​​ 表示第 i 张放入的牌的点数。

输入输出格式

第一行两个整数 n,k。
第二行,n 个整数 c1,c2,…,cn表示花色,满足 1<=ci<=k
第三行,n 个整数 v1,v2,…,vn表示点数。
输出一行一个整数,表示最多能得到的分数。

一眼dp方程,f[i]表示取到第i位时的最大分数,pre[]表示v[]前缀和。
f[i]=max(f[i],f[j-1]+pre[i]-pre[j-1]) (j<i && c[j]==c[i])
看着挺像斜率优化,然而并没有那么麻烦。
我们可以发现转移方程中,pre[i]只与i本身相关,而f[j-1]和pre[j-1]都是j-1状态,所以我们可以维护每种颜色q[c[i]]的f[j-1]-pre[j-1]的最大值转移时只要将f[i]与pre[i]+q[c[i]]取max即可,注意初始f[i]=f[i-1]。
注意q[i]初始值要足够小,本体数据范围可超过long long。

#include<bits/stdc++.h>
#define fer(i,j,n) for(int i=j;i<=n;i++)
#define far(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
const int maxn=1e6+10;
const int INF=1e18;
using namespace std;
/*----------------------------------------------------------------------------*/
inline ll read()
{
    char ls;ll x=0,sng=1;
    for(;ls<'0'||ls>'9';ls=getchar())if(ls=='-')sng=-1;
    for(;ls>='0'&&ls<='9';ls=getchar())x=x*10+ls-'0';
    return x*sng;
}
/*----------------------------------------------------------------------------*/
ll n,k;
ll c[maxn],v[maxn],f[maxn],pre[maxn],q[maxn],ans=-INF;
int main()
{
    cin>>n>>k;
    fer(i,0,k)q[i]=-INF;
    pre[0]=0;
    fer(i,1,n)
        c[i]=read();
    fer(i,1,n)
    {
        v[i]=read();
        pre[i]=pre[i-1]+v[i];
    }

    f[0]=0;
    fer(i,1,n)
    {
        f[i]=f[i-1];
        f[i]=max(f[i],pre[i]+q[c[i]]);
        q[c[i]]=max(q[c[i]],f[i-1]-pre[i-1]);
    }
    fer(i,1,n)
    ans=max(ans,f[i]);
    cout<<ans;
}
### 计算从1到N的阶乘之和 在编程竞赛中,计算从1到N的阶乘之和是一个常见的题目。以下是实现该功能的方法以及一些注意事项。 #### 方法描述 可以通过循环来逐步累加每个数的阶乘值。由于阶乘增长非常迅速,因此需要注意数据类型的选取以防止溢出。通常情况下,在C++中可以选择`unsigned long long`作为存储结果的数据类型[^3]。 下面提供了一个基于C++的标准解决方案: ```cpp #include <iostream> using namespace std; int main() { unsigned int n; cout << "Enter a positive integer: "; cin >> n; unsigned long long sum = 0; // 存储最终的结果 unsigned long long factorial = 1; // 当前的阶乘值 for (unsigned int i = 1; i <= n; ++i) { factorial *= i; // 更新当前阶乘值 sum += factorial; // 累加至总和 } cout << "Sum of factorials from 1 to " << n << " is: " << sum << endl; return 0; } ``` 此代码片段展示了如何通过简单的迭代方法完成任务。注意这里使用了`unsigned long long`以适应较大的数值范围。 对于Python而言,其内置的大整数支持使得处理此类问题更加简便: ```python def factorial_sum(n): total, fact = 0, 1 for i in range(1, n + 1): fact *= i # Update the current factorial value. total += fact # Add it to the running total. return total n = int(input("Enter a number: ")) print(f"The sum of factorials up to {n} is:", factorial_sum(n)) ``` 上述Python版本无需担心数据类型的选择问题,因为Python自动管理大整数运算[^1]。 #### 性能优化建议 当面对更大的输入规模时,应考虑算法的时间复杂度与空间复杂度。尽管本题目的直解法已经足够高效,但在更复杂的场景下可能还需要引入动态规划或其他高级技[^2]。 另外,利用标准模板库(STL),如向量(vector)或者列表(list),可以帮助更好地管理和操作大量中间结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值