题目描述
一天,神犇和 LCR 在玩扑克牌。他们玩的是一种叫做“接竹竿”的游戏。
游戏规则是:一共有 n 张牌,每张牌上有一个花色 c 和一个点数 v,花色不超过 k 种。将这些牌依次放入一列牌的末端。若放入之前这列牌中已有与这张牌花色相同的牌,你可以选择将这张牌和任意一张花色相同的牌之间的所有牌全部取出队列(包括这两张牌本身),并得到与取出的所有牌点数和相同的分数。现在已知 LCR 把这 n 张牌放入队列的顺序,求她最多能得多少分。
输入顺序即为 LCR 放入队列的顺序。即,ci 表示第 i 张放入的牌的花色,vi 表示第 i 张放入的牌的点数。
输入输出格式
第一行两个整数 n,k。
第二行,n 个整数 c1,c2,…,cn表示花色,满足 1<=ci<=k
第三行,n 个整数 v1,v2,…,vn表示点数。
输出一行一个整数,表示最多能得到的分数。
一眼dp方程,f[i]表示取到第i位时的最大分数,pre[]表示v[]前缀和。
f[i]=max(f[i],f[j-1]+pre[i]-pre[j-1])
(j<i
&&
c[j]==c[i])
看着挺像斜率优化,然而并没有那么麻烦。
我们可以发现转移方程中,pre[i]只与i本身相关,而f[j-1]和pre[j-1]都是j-1状态,所以我们可以维护每种颜色q[c[i]]的f[j-1]-pre[j-1]的最大值转移时只要将f[i]与pre[i]+q[c[i]]取max即可,注意初始f[i]=f[i-1]。
注意q[i]初始值要足够小,本体数据范围可超过long long。
#include<bits/stdc++.h>
#define fer(i,j,n) for(int i=j;i<=n;i++)
#define far(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
const int maxn=1e6+10;
const int INF=1e18;
using namespace std;
/*----------------------------------------------------------------------------*/
inline ll read()
{
char ls;ll x=0,sng=1;
for(;ls<'0'||ls>'9';ls=getchar())if(ls=='-')sng=-1;
for(;ls>='0'&&ls<='9';ls=getchar())x=x*10+ls-'0';
return x*sng;
}
/*----------------------------------------------------------------------------*/
ll n,k;
ll c[maxn],v[maxn],f[maxn],pre[maxn],q[maxn],ans=-INF;
int main()
{
cin>>n>>k;
fer(i,0,k)q[i]=-INF;
pre[0]=0;
fer(i,1,n)
c[i]=read();
fer(i,1,n)
{
v[i]=read();
pre[i]=pre[i-1]+v[i];
}
f[0]=0;
fer(i,1,n)
{
f[i]=f[i-1];
f[i]=max(f[i],pre[i]+q[c[i]]);
q[c[i]]=max(q[c[i]],f[i-1]-pre[i-1]);
}
fer(i,1,n)
ans=max(ans,f[i]);
cout<<ans;
}