2024牛客寒假营Day5||ACEGHIJKLM

原文地址

A-mutsumi的质数合数

题意

一个由 n n n个正整数组成的数组,求其中质数和合数共有几个。

数据范围

n ( 1 ≤ n ≤ 100 ) n(1\leq n\leq 100) n(1n100)

a i ( 1 ≤ a i ≤ 100 ) a_i(1\leq a_i\leq 100) ai(1ai100)

思路

1不是质数也不是合数。

参考代码

void solve() {
    int n;cin >> n;
    int ans = 0;
    for (int i = 0;i < n;i++) {
        int x;cin >> x;
        if (x>1)ans++;
    }
    cout << ans << '\n';
}

C-anon的私货

题意

给一个数组中一些位置插入 0 0 0,要求插入后任意不是全 0 0 0子段的平均值大于等于 1 1 1,询问最多插入多少个 0 0 0

数据范围

n ( 1 ≤ n ≤ 1 0 5 ) n(1\leq n\leq 10^5) n(1n105)

a i ( 1 ≤ a i ≤ 1 0 9 ) a_i(1\leq a_i\leq 10^9) ai(1ai109)

思路

从第一位开始贪,统计在每一位前最多可以插入多少个0,考虑两数之间的0的数目不能大于这2位之间允许的最大值。

参考代码

void solve() {
    int n;cin >> n;
    vector<ll>a(n + 2);
    vector<ll>b(n + 2);
    for (int i = 1;i <= n;i++) {
        cin >> a[i];
        b[i] = a[i] - 1;
    }
    b[0] = 1e9 + 50;
    b[n + 1] = 1e9 + 50;
    ll ans = 0;

    for (int i = 0;i <= n;i++) {
        // for (int j = 0;j <= n + 1;j++)cout << b[j] << ' ';cout << endl;
        if (b[i] >= b[i + 1]) {
            ans += b[i + 1];
            ll tmp = b[i + 1];
            b[i + 1] = 0;
            b[i] -= tmp;
        }
        else {
            ans += b[i];
            ll tmp = b[i];
            b[i] = 0;
            b[i + 1] -= tmp;
        }
    }

    cout << ans << endl;
}

E-soyorin的数组操作(easy)

题意

有一个长为 n n n的数组 a a a

操作:选择一个不超过 n n n的偶数 k k k a i = a i + i ( 1 ≤ i ≤ k ) a_i=a_i+i(1\leq i\leq k) ai=ai+i(1ik)

询问是否能在任意操作后使得数组非降序。

数据范围

T ( 1 ≤ T ≤ 1 0 6 ) T(1≤T≤10^6) T(1T106)

n ( 1 ≤ n ≤ 1 0 5 ) n(1≤n≤10^5) n(1n105)

a i ( 1 ≤ a i ≤ 1 0 12 ) a_i(1\leq a_i\leq 10^{12}) ai(1ai1012)

思路

操作的效果是使得 a i + 1 − a i a_{i+1}-a{i} ai+1ai的值增大1,从后往前遍历,将靠后的部分先操作为非降序(操作的效果会影响到前段)

参考代码

void solve() {
    int n;cin >> n;
    vector<ll>a(n + 1);
    for (int i = 1;i <= n;i++) {
        cin >> a[i];
    }
    if (n % 2 == 0 || n == 1) {
        // 加個無窮次總能彌補不合適的地方
        cout << "YES\n";return;
    }

    // a(n-1)上限是a(n),在這個上限下能不能把它變成需要的
    ll d = 0;   // 操作次數(對應相鄰兩個數之間的差距減少d(越靠後增加的越多
    for (int i = n - 1;i >= 1;i--) {
        if (a[i] > a[i + 1] + d) {
            cout << "NO\n";return;
        }
        if (i % 2 == 0)
            d += (a[i + 1] - a[i] + d) / i;
    }
    cout << "YES\n";
}

G&H-sakiko的排列构造(easy/hard)

题意

构造一个长为 n n n的排列,使得排列中每个 p i + i ( 1 ≤ i ≤ n ) p_i+i(1\leq i\leq n) pi+i(1in)都是质数。

输出符合要求的排列,若无解输出-1。

数据范围

n ( 1 ≤ n ≤ 1 0 6 ) n(1\leq n\leq 10^6) n(1n106)

思路

排列是 1 ∼ n 1\sim n 1n的,下标也是 1 ∼ n 1\sim n 1n的,从 p i = n p_i=n pi=n开始给寻找匹配的下标(在可选范围内从小到大),也就是寻找使得 p i + i p_i+i pi+i是质数的最小 i i i,即比 p i p_i pi大的最小质数。如果该符合要求的质数可以被找到就缩小范围,直到所有的数都可以被确定。(从ac结果看似乎并不存在无法被构造出的排列耶)

参考代码

void solve() {
    ll n;cin >> n;
    if (n == 1) {
        cout << "1\n";
        return;
    }
    else if (n == 2) {
        cout << "2 1\n";
        return;
    }

    vector<ll>primes(n * 2 + 1);
    vector<bool>isprime(n * 2 + 1, true);

    isprime[0] = isprime[1] = false;
    for (int i = 2;i <= 2 * n;i++) {
        if (isprime[i]) {
            primes.push_back(i);
            for (int j = i + i;j <= 2 * n;j += i) {
                isprime[j] = false;
            }
        }
    }

    ll x = n;
    ll pos = n;
    vector<ll>a(n + 1);
    while (pos >= 1) {
        bool f = false;
        for (int i = pos + 1;i <= pos * 2;i++) {
            if (isprime[i]) {
                f = true;
                x = i;break;
            }
        }
        
        // 从ac结果看似乎并不存在-1的情况(好神奇!)
//         if (!f) {
//             cout << -1 << '\n';return;
//         }
//         if (x > pos * 2) {
//             cout << -1 << '\n';return;
//         }
        
        // ai+i=x
        for (int i = pos;i >= x - pos;i--) {
            a[i] = x - i;
        }
        pos = x - pos - 1;
    }
    for (int i = 1;i <= n;i++) {
        cout << a[i] << ' ';
    }cout << '\n';
}

I-rikki的最短路

题意

给出一位轴上的3个坐标, r i k k i rikki rikki需要把 A A A带到 T T T的坐标,初始 r i k k i rikki rikki在原点,且只知道 T T T的坐标,到达 T T T之后可以知道 A A A的坐标。

r i k k i rikki rikki有一个范围为 k k k的视野,在 [ u − k , u + k ] [u-k,u+k] [uk,u+k]视野内的 A A A可以被发现。

数据范围

t , a ( − 1 0 9 ≤ t , a ≤ 1 0 9 ) , k ( 1 ≤ k ≤ 1 0 9 ) t,a(-10^9\leq t,a\leq 10^9),k(1\leq k\leq 10^9) t,a(109t,a109),k(1k109)

思路

签到模拟(怎么会有人签到交7发才过啊(小声))

视野只有在出发点的时候看A有用,其他情况按规则来qwq

参考代码

void solve() {
    ll t, a, k;cin >> t >> a >> k;
    if (a >= -k && a <= k) {
        if (a * t > 0) {
            cout << t << '\n';return;
        }
        else {
            cout << abs(2 * a - t) << '\n';return;
        }
    }
    else if (a * t > 0) {
        if (abs(a) < abs(t)) {
            cout << abs(t) << '\n';return;
        }
        else {
            cout << abs(a) + abs(a - t) << '\n';return;
        }
    }
    else {
        cout << 3 * abs(t) + 2 * abs(a) << '\n';return;
    }
}

J-rikki的数组陡峭值

题意

数组的陡峭值:数组相邻元素之差的绝对值之和。

给出数组 a a a中每个元素 a i a_i ai的范围 [ l i , r i ] [l_i,r_i] [li,ri],求最小的陡峭值。

数据范围

n ( 1 ≤ n ≤ 1 0 5 ) n(1\leq n\leq 10^5) n(1n105)

l i , r i ( 1 ≤ l i , r i ≤ 1 0 9 ) l_i,r_i(1\leq l_i,r_i\leq 10^9) li,ri(1li,ri109)

思路

贪心,从前往后遍历,如果 a i a_i ai a i + 1 a_{i+1} ai+1的范围有重合,则直接将 a i a_i ai a i + 1 a_{i+1} ai+1的值取成同一个数,陡峭值不增加,更新 a i + 1 a_{i+1} ai+1的范围为两数重合的范围。如果范围不重合,两数分别取靠近的两个端点,并将 a i + 1 a_{i+1} ai+1的范围缩成1个点。

参考代码

void solve() {
    int n;cin >> n;
    vector<ll>l(n + 1), r(n + 1);
    for (int i = 1;i <= n;i++) {
        cin >> l[i] >> r[i];
    }
    // 這題該不會能貪吧(破防
    ll ans = 0;
    for (int i = 1;i < n;i++) {
        ll x = max(l[i], l[i + 1]);
        ll y = min(r[i], r[i + 1]);
        if (x <= y) {
            // 貪貪貪
            l[i + 1] = x;r[i + 1] = y;
        }
        else {
            ans += abs(x - y);
            if (r[i + 1] < l[i])
                l[i + 1] = r[i + 1];
            else
                r[i + 1] = l[i + 1];
        }
    }
    cout << ans << endl;
}

K-soyorin的通知

题意

s o y o r i n soyorin soyorin要把消息传递给 n n n个人,每个知道消息的可以将消息传递给其他人。

i i i个人可以花费 a i a_i ai将消息通知给最多 b i b_i bi个人,前提是第 i i i个人已知消息,消息源通知一个人花费为 p p p。求最小花费。

数据范围

n ( 1 ≤ n ≤ 1000 ) n(1\leq n\leq 1000) n(1n1000)

p ( 1 ≤ p ≤ 1 0 6 ) p(1\leq p\leq 10^6) p(1p106)

a i , b i ( 1 ≤ a i , b i ≤ 1 0 6 ) a_i,b_i(1\leq a_i,b_i\leq 10^6) ai,bi(1ai,bi106)

思路

dp,更新通知 i i i个人的最小花费。每当第 i i i个人知道消息时更新使得 j j j人知道消息的花费。

参考代码

void solve() {
    ll n, p;cin >> n >> p;
    vector<ll>a(n + 1), b(n + 1);
    for (int i = 1;i <= n;i++) {
        cin >> a[i] >> b[i];
    }
    // dp:通知i個人的最小花費j,dp[i]=j
    vector<ll>dp(n + 1);
    for (int i = 1;i <= n;i++)
        dp[i] = p * i;

    for (int i = 1;i <= n;i++) {
        for (int j = 1;j <= n;j++) {
            // 第i個人已經被通知的情況下,通知j個人,花費a[i]
            if (j - b[i] > 0)
                dp[j] = min(dp[j], dp[j - b[i]] + a[i]);
            else
                dp[j] = min(dp[j], dp[1] + a[i]);
        }
    }

    cout << dp[n] << '\n';
}

L-anon的星星

题意

赢一局可以收到1颗星星,输一局失去1颗星星,没有平局。

已知一共玩了 n n n局,共获得了 x x x颗星星,求胜利了几局失败了几局。

如果无法知道胜利的局数和失败的局数输出-1。

数据范围

n ( 1 ≤ n ≤ 1000 ) n(1\leq n\leq 1000) n(1n1000)

x ( − n ≤ x ≤ n ) x(-n\leq x\leq n) x(nxn)

思路

k k k局就是失败 n − k n-k nk局,星星数是 k − ( n − k ) k-(n-k) k(nk)。如果 k k k有合法值就是合法的。

参考代码

void solve() {
    ll n, x;cin >> n >> x;
    if ((n + x) & 1) {
        cout << -1 << '\n';
    }
    else {
        ll k = (n + x) / 2;
        cout << k << ' ' << n - k << '\n';
    }
}

M-mutsumi的排列连通

题意

有两个长度为 n n n的排列上下组成 2 × n 2\times n 2×n的矩形。

有操作:选择数字 x x x,将矩形中的 x x x删去。

询问至少多少次操作后,可以将矩形分成至少2个连通块(连通块不一定是矩形)。

如果无法实现,输出-1。

数据范围

T ( 1 ≤ T ≤ 1 0 5 ) T(1\leq T\leq 10^5) T(1T105)

n ( 1 ≤ n ≤ 1 0 5 ) n(1\leq n\leq 10^5) n(1n105)

排列 a ( 1 ≤ a i ≤ n ) a(1\leq a_i\leq n) a(1ain)

排列 b ( 1 ≤ b i ≤ n ) b(1\leq b_i\leq n) b(1bin)

n n n总和不超过 1 0 5 10_5 105

思路

特判 n = 1 , 2 n=1,2 n=1,2

n ≥ 3 n\ge 3 n3的最多删2个即可实现需求。

遍历寻找是否存在 a i = b i a_i=b_i ai=bi或者 a i = b i + 1 a_i=b_{i+1} ai=bi+1或者 a i = b i − 1 a_i=b_{i-1} ai=bi1的情况,注意边界判断。

参考代码

void solve() {
    int n;cin >> n;
    vector<ll>a(n + 1), b(n + 1);
    for (int i = 1;i <= n;i++) {
        cin >> a[i];
    }
    for (int i = 1;i <= n;i++) {
        cin >> b[i];
    }
    if (n == 1) {
        cout << "-1\n";return;
    }
    if (n == 2) {
        if (a[1] == b[1]) {
            cout << "-1\n";
        }
        else {
            cout << "1\n";
        }
        return;
    }
    for (int i = 1;i <= n;i++) {
        if ((i != 1 && i != n && a[i] == b[i]) || (i > 1 && a[i] == b[i - 1]) || (i < n && a[i] == b[i + 1])) {
            cout << "1\n";return;
        }
    }
    cout << "2\n";return;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值