【数字电路】代数逻辑

1 代数逻辑的基本规则和运算法则

1.1 基本运算关系

  1. 自等律: A + 0 = A A+0=A A+0=A A ⋅ 1 = A A·1=A A1=A
  2. 0 - 1律: A + 1 = 1 A+1=1 A+1=1 A ⋅ 0 = 0 A·0=0 A0=0
  3. 重叠律: A + A = A A+A=A A+A=A A ⋅ A = A A·A=A AA=A
  4. 还原律: A ‾ ‾ = A \overline{\overline{A}}=A A=A
  5. 互补律: A + A ‾ = 1 A+\overline{A}=1 A+A=1
  6. 交换律: A + B = B + A A+B=B+A A+B=B+A
  7. 结合律: A + ( B + C ) = ( A + B ) + C A+(B+C)=(A+B)+C A+(B+C)=(A+B)+C A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C A·(B·C)=(A·B)·C A(BC)=(AB)C
  8. 分配律: A ⋅ ( B + C ) = A ⋅ B + A ⋅ C A·(B+C)=A·B+A·C A(B+C)=AB+AC A + B ⋅ C = ( A + B ) ⋅ ( A + C ) A+B·C=(A+B)·(A+C) A+BC=(A+B)(A+C)
  9. 吸收律:
    9.1. 原变量的吸收: A + A B = A A+AB=A A+AB=A
    9.2. 反变量的吸收: A + A ‾ B = A + B A+\overline{A}B=A+B A+AB=A+B
    9.3. 混合变量的吸收: A B + A ‾ C + B C = A B + A ‾ C AB+\overline{A}C+BC=AB+\overline{A}C AB+AC+BC=AB+AC

1.2 德摩根律

A ⋅ B ‾ = A ‾ + B ‾ \overline{A·B}=\overline{A}+\overline{B} AB=A+B A + B ‾ = A ‾ ⋅ B ‾ \overline{A+B}=\overline{A}·\overline{B} A+B=AB
证明:用真值表证明
在这里插入图片描述
德摩根律在电路设计中的应用:
在这里插入图片描述
注意:虽然上述逻辑门具有相同的逻辑关系,但是电路实体并不存在“非与门”、“非或门” \color{red}{注意:虽然上述逻辑门具有相同的逻辑关系,但是电路实体并不存在“非与门”、“非或门”} 注意:虽然上述逻辑门具有相同的逻辑关系,但是电路实体并不存在非与门非或门

2 逻辑函数的表示方法

2.1 真值表

  • 真值表:表征逻辑事件输入和输出之间全部可能状态的表格。
  • 通常以1表示真,0 表示假。
  • 真值表是在逻辑中使用的一类数学表,用来确定一个表达式是否为真或有效。

2.2 逻辑表达式

  • 逻辑表达式是指用与、或、非等逻辑运算符号来表达逻辑函数的表达式
    (这个好像没什么要多说的,简单又好写)

2.3 逻辑电路图

  • 一般可以由逻辑表达式直接画出相应的逻辑电路图
    (这个更简单,不做赘述)

3 逻辑化简

3.1 用代数法化简逻辑函数

通过并项、添项、配项、吸收等方法,结合基本运算关系对逻辑函数进行化简
(逻辑性极强,不是很特别推荐,但是还是要会,或者说能看懂,所以下面给出一个例子)
F = A ⋅ B + A ‾ ⋅ B ‾ ‾ ⋅ B ⋅ C + B ‾ ⋅ C ‾ ‾ ‾ 德摩根律 F = A ⋅ B + A ‾ ⋅ B ‾ + B ⋅ C + B ‾ ⋅ C ‾ 配项 F = A ⋅ B + A ‾ ⋅ B ‾ ( C + C ‾ ) + B ⋅ C ( A + A ‾ ) + B ‾ ⋅ C ‾ 分配律 F = A ⋅ B + A ‾ ⋅ B ‾ ⋅ C + A ‾ ⋅ B ‾ ⋅ C ‾ + B ⋅ C ⋅ A + B ⋅ C ⋅ A ‾ + B ‾ ⋅ C ‾ 交换、结合 F = A ⋅ B + A ⋅ B ⋅ C + A ‾ ⋅ C ( B ‾ + B ) + A ‾ ⋅ B ‾ ⋅ C ‾ + B ‾ ⋅ C ‾ 吸收、互补 F = A ⋅ B + A ‾ ⋅ C + B ‾ ⋅ C ‾ \begin{array}{c|lcr} & F=\overline{\overline{A·B+\overline{A}·\overline{B}}·\overline{B·C+\overline{B}·\overline{C}}}\\\\ 德摩根律 & F=A·B+\overline{A}·\overline{B}+B·C+\overline{B}·\overline{C}\\\\ 配项 & F=A·B+\overline{A}·\overline{B}(C+\overline{C})+B·C(A+\overline{A})+\overline{B}·\overline{C}\\\\ 分配律 & F=A·B+\overline{A}·\overline{B}·C+\overline{A}·\overline{B}·\overline{C}+B·C·A+B·C·\overline{A}+\overline{B}·\overline{C}\\\\ 交换、结合 & F=A·B+A·B·C+\overline{A}·C(\overline{B}+B)+\overline{A}·\overline{B}·\overline{C}+\overline{B}·\overline{C}\\\\ 吸收、互补 & F=A·B+\overline{A}·C+\overline{B}·\overline{C} \end{array} 德摩根律配项分配律交换、结合吸收、互补F=AB+ABBC+BCF=AB+AB+BC+BCF=AB+AB(C+C)+BC(A+A)+BCF=AB+ABC+ABC+BCA+BCA+BCF=AB+ABC+AC(B+B)+ABC+BCF=AB+AC+BC

3.2 用卡诺图化简逻辑函数

步骤:

  1. 画出卡诺图
  2. 画圈得到合并后的乘积项
  3. 写出最简“与或”表达式

画卡诺图对于我们来说轻而易举,写表达式也是易如反掌,那么最大的问题就来到了——如何画圈?

首先,为了保证卡诺图中逻辑相邻和几何相邻的一致性

逻辑相邻?好熟悉的名字啊,没错,就是你想的——格雷码

举个例子:对于双变量AB,我们不采用二进制顺序00 01 10 11,而是采用格雷码顺序00 01 11 10
于是他就长下面这个样子:
在这里插入图片描述
我们根据真值表向卡诺图中填入0和1之后(为了方便,通常不用填入0),就可以开始圈啦!
(大前提:不能斜着圈)
下面我给出几种常见类型

  1. 要做到不漏,所有的1必须被圈中在这里插入图片描述

  2. 不要去圈冗余圈在这里插入图片描述

  3. 注意卡诺图的几何相邻性在这里插入图片描述

  4. 如果存在无关项(don’t care),一般填入X,其取值视情况而定在这里插入图片描述
    有uu估计要问了?“笛哥,为啥不圈底下那俩X嘞?”
    那是因为,咱们要去找他的最简“与或”表达式!我让那俩X=0,不就可以不管了呗!
    最简!!!

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孤夜残笛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值