题干
给你一个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。
由于在某些语言中不能改变数组的长度,所以必须将结果放在数组nums的第一部分。更规范地说,如果在删除重复项之后有 k 个元素,那么 nums 的前 k 个元素应该保存最终结果。
将最终结果插入 nums 的前 k 个位置后返回 k 。
不要使用额外的空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。
示例
示例1
输入:nums = [1,1,2]
输出:2, nums = [1,2,_]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。
示例2
输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。
题解
(一)双指针解法
时间复杂度:O(N) 空间复杂度:O(1)
思路及算法
题目的要求是必须通过原地修改数组的方法,使用O(1)的空间复杂度完成。
由于数组nums是有序的,所以如果对任意i<j,如果nums[i] = nums[j],则对任意 i<=k<=j,必有nums[i] = nums[k] = nums[j],即相等的元素在数组中的下标一定是连续的。
如果数组nums的长度为0,则数组为空,直接返回0;
当数组nums的长度大于0,数组至少包含一个元素,因此nums[0]保持原状,从下标1开始删除重复元素。
定义两个指针fast和slow,分别为快指针和慢指针,快指针表示遍历数组到达的下标位置,慢指针表示下一个不同元素要填入的下标位置,初始时两个指针都指向下标1.
假设数组长度为n,将快指针fast依次遍历从1到n-1的每个位置,对于每个位置,如果nums[fast]不等于nums[fast-1],说明nums[fast]和之前的元素都不同,因此将nums[fast]的值复制到nums[slow],然后将slow的值加一,指向下一个位置。
遍历结束后,从nums[0]到nums[slow-1]的每个元素都不相同且包含原数组中的每个不同的元素,因此新的长度为slow,只要返回slow即可
代码实现
class Solution {
public int removeDuplicates(int[] nums) {
int len = nums.length;
int slow = 1;
int fast = 1;
if (len==0) return 0;
while(fast < len){
if(nums[fast] != nums[fast-1]){
nums[slow] = nums[fast];
slow++;
}
fast++;
}
return slow;
}
}
反思与总结
- 这个边界条件一定一定要想清楚,以及块慢指针的初始位置,是都是从0开始,还是都是从1开始,还是一个从0开始一个从1开始。很容易没想清楚就出错了
- 当fast所指数不等于slow的时候,slow的下一个数就要加上fast当前所指的数,同时slow右移加一