CLIP-VIT-L + Qwen 多模态源码阅读 - 语言模型篇(3)

多模态学习笔记 - 语言模型篇(3)

参考repo:WatchTower-Liu/VLM-learning; url: VLLM-BASE

吐槽

今天接着昨天的源码继续看,黑神话:悟空正好今天发售,希望广大coder能玩的开心~

学习心得

前情提要

详情请看多模态源码阅读 - 2
上次我们讲到利用view()函数对token_type_ids、position_ids进行重新塑形,确保这些张量的最后一个维度和input_shape(输入序列数据)的最后一个维度相等。重构的代码中默认启用缓存键值对(显然use_cache的bool值有点可有可无了QAQ),如果past_key_values的值为空,代表处于推理或者训练的第一步,此时我们初始化past_length为0,初始化past_key_values为长度为Qwen模型层数量的元组,self.h是Qwen模型的成员变量,我们无需太过关心(因为我们只是继承Qwen模型的成员变量,并重构了forward方法)。
如果我们当前不处于训练或推理的第一步,past_key_values显然就不为空(因为我们默认启用缓存键值对,ps:科研级代码是这样的),不管缓存量化(use_cache_quantization)启用与否,我们将past_length更新为第一个注意力头键张量的第二个或倒数第二个维度。这里唯一的区别只是元组的维数和维度不太一样。
如果position_ids为None,我们需要初始化一个position_ids,起始位置为past_length,终止位置为psst_lenght + input_shape[=1],确保我们的position_ids长度与input_shape的最后一个维度相等,随后重新塑形,同样是为了确保position_ids为二维张量,且最后一个维度与input_shape对齐,代码如下:

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            if self.use_cache_quantization:
                past_length = past_key_values[0][0][0].size(2)
            else:
                past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(
                past_length,
                input_shape[-1] + past_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

新的记忆

代码块1

接着上面的代码,继续看MQwen.py中MQwenModel中重构的forward方法,代码如下:

		if attention_mask is not None:
            # image_feaute_length = self.otherConfig["image_context_length"]*self.otherConfig["image_feature_hidden_size"]
            # attention_mask_length = attention_mask.shape[-1] - image_feaute_length + self.otherConfig["image_context_length"]
            # attention_mask = torch.ones((batch_size, attention_mask_length), dtype=torch.long, device=device)
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            attention_mask = attention_mask[:, None, None, :]
            attention_mask = attention_mask.to(dtype=self.dtype)
            attention_mask 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值