pytorch每日一学49(torch.where())根据t指定条件更改指定tensor中的数值

这篇博客详细介绍了PyTorch中的torch.where函数,它根据条件选择张量中的元素。当条件满足时,保留原张量的值,否则替换为另一个张量的对应值。文章通过例子展示了如何使用该函数,并指出张量与标量的组合要求。此外,还提到了torch.nonzero(condition, astuple=True)与torch.where(condition)在查找满足条件元素位置上的等价性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第49个方法

torch.where(condition, x, y) → Tensor

此方法是将x中的元素和条件相比,如果符合条件就还等于原来的元素,如果不满足条件的话,那就去y中对应的值,公式为
在这里插入图片描述
举个例子就清楚了,官方例子如下:

>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> x
tensor([[-0.4620,  0.3139],
        [ 0.3898, -0.7197],
        [ 0.0478, -0.1657]])
>>> torch.where(x > 0, x, y)
tensor([[ 1.0000,  0.3139],
        [ 0.3898,  1.0000],
        [ 0.0478,  1.0000]])
>>> x = torch.randn(2, 2, dtype=torch.double)
>>> x
tensor([[ 1.0779,  0.0383],
        [-0.8785, -1.1089]], dtype=torch.float64)
>>> torch.where(x > 0, x, 0.)
tensor([[1.0779, 0.0383],
        [0.0000, 0.0000]], dtype=torch.float64)

其中第一个例子,取x大于零,那么x中小于0的值就会变成y中与之相对应位置的值,由于y里面都是1,所以x中小于0的位置都变成了1。

第二个例子条件仍然为x>0,但是这时的y是0,那么x中小于0的值就都变成了0。

其实是有对应位置关系的,x中元素不满足条件时,取得是y中对应的元素来填充里面的值。如下所示:
在这里插入图片描述
a中第一个小于零的值为-1,被b中对应的值3直接填补,而-2被7填补,所以填补是有对应关系的,所以x和y必须是可广播的,否则就会报错。

标量和张量也可以组合,就如同官方的第二个示例,其中x就是张量,而y就是标量。目前有效地标量和张量的组合为:

  • float型和double型
  • integral型和long型
  • complex型和complex 128型

而torch.where(condition)与torch.nonzero(condition, as tuple=True)相等,就是返回了其中满足条件的元素的位置,不过是以元组的形式返回的,第一个元组代表了第一个维度的位置,第二个代表第二维,一次类推,如下所示:

在这里插入图片描述
其中取了a中大于0的元素,返回了它们的位置,取第一个里面的为第一维,第二个里面的为第二维,即位置为(0, 0), (0, 3)…,详情请看torch.nonzero()

<think>好的,我现在需要回答用户关于在Torch 1.10中使用torch.where函数处理NaN的问题。首先,我得回忆torch.where的基本用法。torch.where通常是根据条件在两个张量之间进行选择,比如torch.where(condition, x, y),当条件为真时选x,否则选y。 用户的问题是要替换张量中的NaN为0。那么,首先需要创建条件,检测张量中的NaN。在PyTorch中,可以使用torch.isnan(tensor)来得到个布尔张量,标记哪些位置是NaN。然后,用这个条件作为torch.where的第个参数,第二个参数应该是替换后的,也就是0,第三个参数是原张量,这样在条件为True的位置选0,否则保留原。 不过,需要注意张量的形状是否匹配。如果原张量和替换都是标量或者形状匹配的话,应该没问题。例如,假设原始张量是t,那么可以这样写:torch.where(torch.isnan(t), torch.tensor(0.0, device=t.device), t)。这里还要确保替换的设备(CPU或GPU)与原张量致,所以最好指定device参数。 另外,用户可能想知道如何处理整个张量中的NaN,而不仅仅是特定维度。因此,这个方法是适用的,因为torch.isnan(t)会生成与原张量形状相同的布尔张量,逐个元素检查。 还需要考虑版本兼容性。用户提到的是Torch 1.10,但torch.wheretorch.isnan在这些版本中应该都是可用的。不过,可能需要确认是否有更高效的方法,比如使用t.nan_to_num(),但用户特别询问的是用torch.where,所以还是按照用户的需求来解答。 最后,可能需要给出个完整的示例代码,包括创建含有NaN的张量,然后应用torch.where进行替换,并验证结果是否正确。例如: import torch t = torch.tensor([1.0, float('nan'), 3.0]) result = torch.where(torch.isnan(t), torch.tensor(0.0), t) print(result) # 应该输出tensor([1., 0., 3.]) 这样用户就可以直观地看到效果。同时,可能还要提醒关于原地操作的问题,因为torch.where返回的是新张量,原张量不会被修改,除非显式赋。 总结步骤应该是:检测NaN -> 创建替换条件 -> 应用torch.where生成新张量。这样用户就能明确操作流程。另外,可能需要提到其他相关函数,比如torch.nan_to_num,作为替代方法,但重点放在用户指定torch.where上。 最后,生成相关问题时要围绕张量操作、处理NaN的其他方法,以及PyTorch中的条件选择函数等方向考虑。</think>在 Torch 1.10 中,使用 `torch.where` 替换张量中的 NaN 为 0 的步骤如下: --- ### **步骤说明** 1. **检测 NaN **:使用 `torch.isnan()` 生成布尔掩码,标记张量中 NaN 的位置。 2. **替换为 0**:通过 `torch.where()` 将 NaN 替换为 0,非 NaN 保留原。 ```python import torch # 创建含 NaN 的张量示例 t = torch.tensor([1.0, float('nan'), 3.0, float('nan')]) # 替换 NaN 为 0 result = torch.where(torch.isnan(t), torch.tensor(0.0), t) print(result) # 输出:tensor([1., 0., 3., 0.]) ``` --- ### **关键点** - `torch.isnan(t)`:生成与原张量形状相同的布尔掩码,标记 NaN 位置[^1]。 - `torch.where(condition, x, y)`:根据 `condition` 选择 `x`(替换)或 `y`(原),需确保 `x` 和 `y` 的数据类型与设备(CPU/GPU)致[^2]。 - **设备兼容性**:若原张量在 GPU 上,替换指定相同设备,例如 `torch.tensor(0.0, device=t.device)`。 --- ### **替代方法** 若需更简洁的实现,可直接使用 `torch.nan_to_num()`: ```python result = torch.nan_to_num(t, nan=0.0) # 替换 NaN 为 0,保留其他 ``` ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值