pytorch每日一学23(torch.full()、torch.full_like())创造全value的矩阵

第23个方法

torch.full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor


torch.full_like(input, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor
  • 这两个方法大同小异,所以就放在一起讲了,两个方法的作用几乎相同,就是给定一个值fill_value和一个size,创建一个矩阵元素全为fill_value的大小为size的tensor。

  • 使用方法如下:
    在这里插入图片描述

  • torch.full_like(input, fille_value),就是将input的形状作为返回结果tensor的形状。
    接下来介绍参数

  • size:指定输出tensor的形状。

  • input(torch.full_like()):input的形状将会决定输出tensor的形状。

  • fill_value指定返回tensor的填充值。

  • out:指定输出tensor。

  • dtype:指定输出tensor中数据的类型,不指定则为默认,默认类型可以使用torch.set_default_tensor_type()修改。

  • layout:指定使用的布局,默认为torch.strided

  • device:指定输出tensor所在的设备,默认为CPU,默认类型可以使用torch.set_default_tensor_type()修改。

  • requires_grad:指定生成的tenseor是否需要梯度信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值