pytorch每日一学8(torch.set_default_tensor_type(t))

本文介绍如何使用torch.set_default_tensor_type(t)方法设置PyTorch中的默认浮点类型,包括不同类型的CPU和GPU Tensor及其应用。通过该方法可以直接利用GPU加速计算,并探讨其可能带来的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.第八个方法

torch.set_default_tensor_type(t)
  • 这个方法的意思是设置pytorch中默认的浮点类型,一般使用pytorch进行运算时候使用的都是浮点数来进行计算,所以设置默认浮点数有时候也很重要。
  • 虽然这个方法和曾经的torch.set_default_dtype(d)确实功能很相似,但是实际上今天介绍的这个方法更强大一些(注意两个方法都只可以设置浮点数的默认类型,不可以设置整型的默认类型)。当然这个方法使用后也可以使用torch.get_default_dtype()来获取设置的默认浮点类型。
  • Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行),HalfTensor是专门为GPU设计的,相同元素个数使用的空间更少,解决显存不足的问题,但是由于精度不足可能会出现溢出的问题。
pytorch中可用的浮点类型
数据类型CPU TensorGPU Tensor
32 bit 浮点torch.FloatTensortorch.cuda.FloatTensor
64 bit 浮点torch.DoubleTensortorch.cuda.DoubleTensor
16 bit 单精度浮点torch.cuda.HalfTensor
  • 我们可以通过torch.set_default_tensor_type(t)来将我们的默认浮点类型设置为cuda类型,这样以后我们就不需要将我们的数据迁移到cuda上了,直接就可以使用GPU加速。但是此方法肯可能会造成一些不好的结果,可能有的时候还得需要自己将tensor迁回cpu,所以是使用device迁到cuda上还是使用着这种默认的方法就因人而异了。
    使用方法如下:
import torch

torch.set_default_tensor_type(torch.cuda.FloatTensor)

a = torch.tensor([1., 3])
print(a.dtype,a.device)
  • 结果为:
    在这里插入图片描述
    符合预期
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值