右移一位和除二的区别

首先要说明,这里讨论的区别无关性能方面。

看一下下面这个代码,然后判断两个结果是一样的吗

#include <bits/stdc++.h>

using namespace std;

int main()
{
    for (int n; EOF != scanf("%d", &n); ) {
        printf(">> 1 : %d\n", n >> 1);
        printf("/ 2 : %d\n", n / 2);
    }
    return 0;
}

下意识你会觉得肯定一样啊,但是你真的有输入任意整数试试看吗?

我挑了几个整数,结果如下:

-5
>> 1 : -3
/ 2 : -2
-4
>> 1 : -2
/ 2 : -2
-3
>> 1 : -2
/ 2 : -1
-2
>> 1 : -1
/ 2 : -1
-1
>> 1 : -1
/ 2 : 0
0
>> 1 : 0
/ 2 : 0
1
>> 1 : 0
/ 2 : 0
2
>> 1 : 1
/ 2 : 1
3
>> 1 : 1
/ 2 : 1
4
>> 1 : 2
/ 2 : 2
5
>> 1 : 2
/ 2 : 2


总结一下

  • n为非负数时,>> 1/ 2的结果是一样的
  • n为负数且还是偶数时,>> 1/ 2的结果是一样的
  • n为负数且还是奇数时,>> 1/ 2的结果是不一样的

原因是奇数除二会发生截断现象。而>> 1/ 2n为负奇数时截断的反向不一样。

  • -5 / 2 = -(int)2.5 = -2,这里是把绝对值变小了,加个负号,结果就变大了。
  • -5 >> 1 = (1011) >> 1 = (1101) = -3,假设用4-bit表示一个整数,补码表示。发现结果变小了。

我们纵向比较一下

  • -5 / 2 = -25 / 2 = 2。这表明除二是向零取整
  • -5 >> 1 = -35 >> 1 = 2。这表明右移一位是向下取整

所以我们之前说除二向下取整的说法不明确,应该说成非负数除二是向下取整,整数除二是向零取整。

有了这个之后,我们就发现二分取中点的次完美写法是mid = (l + r) >> 1。详情见二分以及编程过程中求中点各种写法思想解析以及完美写法

### 右移一位的表示方法 在编程中,右移操作通常通过位运算符 `>>` 来实现。对于一个整数变量 `a`,将其值右移一位可以写成如下形式: ```c int result = a >> 1; ``` 上述代码的作用是对变量 `a` 的进制表示向右移一位[^2]。具体来说,右移操作会将每一位向低位方向移动,高位补零或者保持符号位不变(取决于是否有符号),最低位则会被丢弃。 #### 符号影响下的行为 当处理有符号整数时,右移可能会保留最高位作为符号扩展的一部分,这被称为算术右移;而对于无符号整数,则总是用0填充左侧空出的位置,称为逻辑右移。 例如,在C语言中: - 如果 `a` 是正数或无符号数,那么右移相当于除以2并向下取整。 - 若 `a` 是负数且采用算术右移,则结果仍接近于数学上的法效果,但由于舍入机制的不同可能导致细微偏差。 以下是具体的例子展示其工作原理: ```c #include <stdio.h> int main() { unsigned int num1 = 8; // 进制为 00001000 signed int num2 = -8; // 假设32位系统下,进制近似为 ...11111000 printf("num1(8) 右移1位=%d\n", num1 >> 1); printf("num2(-8) 右移1位=%d\n", num2 >> 1); return 0; } // 输出将是: // num1(8) 右移1位=4 // num2(-8) 右移1位=-4 (依赖编译器平台) ``` 此程序片段展示了不同类型的数值如何响应相同的右移命令。 ### 性能优势 利用位运算代替某些乘运算能够显著提升效率,尤其是在涉及大量简单变换的应用场景里。这是因为大多数现代处理器都提供了专门针对这类基本操作的高度优化硬件支持,使得单次位移仅需消耗极短时间完成,远胜过常规算法路径所需多个机器周期的情况[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值