在Centos上为Tesla T4显卡安装NVIDIA驱动以及cuda和cudnn

前期准备:

升级gcc编译环境:

查看gcc版本:

gcc -v        (centos默认好像是4.8.5版本)

升级gcc:

yum install centos-release-scl
yum install devtoolset-9-gcc*

备份旧链接创建新链接:

mv /usr/bin/gcc /usr/bin/gcc-4.8.5
mv /usr/bin/g++ /usr/bin/g++-4.8.5
ln -s /opt/rh/devtoolset-9/root/usr/bin/gcc /usr/bin/gcc
ln -s /opt/rh/devtoolset-9/root/usr/bin/g++ /usr/bin/g++
mv /usr/bin/cc /usr/bin/cc-4.8.5
mv /usr/bin/c++ /usr/bin/c++-4.8.5
ln -s /usr/bin/gcc /usr/bin/cc
ln -s /usr/bin/g++ /usr/bin/c++

安装完再看一下版本,打印:

安装与内核版本一致的kernel-devel:

查看内核版本:

uname -a

yum list | grep kernel-

如果不一致,则安装与内核版本一致的kernel-devel:

yum install "kernel-devel-uname-r == $(uname -r)"

安装完可以看到

(通常会安装在/usr/src/kernels里,里面可能有多个,后面安装显卡驱动的时候如果找不到可以指定)

重启系统:reboot

屏蔽系统自带的nouveau:

查看是否屏蔽:

lsmod | grep nouveau

如果没有输出则说明已经屏蔽,否则需要手动屏蔽;

编辑dist-blacklist.conf文件:

vi /lib/modprobe.d/dist-blacklist.conf

用#注释掉nvidiafb:#blacklist nvidiafb

添加两条:

blacklist nouveau
options nouveau modeset=0

(如果没有该文件可以直接新建一个/etc/modprobe.d/blacklist-nouveau.conf,添加这两条)

重建initramfs image:

mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak

dracut /boot/initramfs-$(uname -r).img $(uname -r)

重启系统 reboot

如果使用的界面centos,安装驱动时要切到使用文本模式:

查看使用模式:

systemctl get-default

关闭GUI,使用文本模式:

systemctl set-default multi-user.target

(等安装完驱动可以systemctl set-default graphical.target切回GUI)

重启系统 reboot

安装NVIDIA显卡驱动:

查看系统显卡:

lspci | grep -E "NVIDIA|VGA"

lshw -numeric -C display

查看是否安装驱动:nvidia-smi

去官网下载驱动:官方驱动 | NVIDIA

选择自己的显卡驱动:

可以查看是否支持自己的显卡,然后下载:

为驱动添加执行权限:chmod a+x NVIDIA-Linux-x86_64-550.54.15.run

安装驱动:

./NVIDIA-Linux-x86_64-550.54.15.run -no-x-check -no-nouveau-check -no-opengl-files

(不添加执行权限也可以sh NVIDIA-Linux-x86_64-550.54.15.run -no-x-check -no-nouveau-check -no-opengl-files)

如果找不到之前安装的内核可以使用参数指定:--kernel-source-path

我的/usr/src/kernels下有两个

指定参数:./NVIDIA-Linux-x86_64-550.54.15.run -no-x-check -no-nouveau-check -no-opengl-files --kernel-source-path=/usr/src/kernels/3.10.0-1160.118.1.el7.x86_64

(提示安装32位的可以自己选择安不安装)

安装完查看结果:nvidia-smi

(卸载驱动使用:./NVIDIA-Linux-x86_64-550.54.15.run --uninstall)

安装合适版本的cuda:

驱动版本和cuda版本对应关系:CUDA 12.5 Release Notes (nvidia.com)

下载对应版本的cuda:CUDA Toolkit Archive | NVIDIA Developer

选择自己的系统版本,可以下载rpm或者runfile的,看自己喜好选一个安装方法,选完系统下面自动有安装方法,照着执行就可:

还是run简单些,下载好run文件安装:

./cuda_12.4.1_550.54.15_linux.run

需要等待一会,然后显示,输入accept,然后选择install,安装;

等待安装结果,输出像下面这样:

===========
= Summary =
===========

Driver:   Installed
Toolkit:  Installed in /usr/local/cuda-12.4/

Please make sure that
 -   PATH includes /usr/local/cuda-12.4/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-12.4/lib64, or, add /usr/local/cuda-12.4/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.4/bin
To uninstall the NVIDIA Driver, run nvidia-uninstall
Logfile is /var/log/cuda-installer.log

通常是安装在/usr/local/cuda-12.4下,记下安装目录配置环境变量:

编辑环境变量:vi /etc/profile

添加四行:

PATH=$PATH:/usr/local/cuda-12.4/bin/
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.4/lib64
export PATH
export LD_LIBRARY_PATH

使配置生效:source /etc/profile

查看cuda信息:

nvcc --version

(卸载cuda,run安装的在/usr/local/cuda/bin目录下有个uninstall自带卸载程序)

安装cuDNN加速:

官网选择合适版本下载:cuDNN Archive | NVIDIA Developer

(需要申请个NVIDIA的账号下载)

下载好后,解压:tar -Jxvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz

将解压后的include文件夹里全部文件复制到cuda目录的include里,将lib文件夹里全部文件复制到cuda的lib64里:

cp cudnn目录/include/* /usr/local/cuda-版本号/include
cp cudnn目录/lib/* /usr/local/cuda-版本号/lib64

### 安装配置 CUDANVIDIA Tesla T4 对于在 CentOS 上针对 NVIDIA Tesla T4 显卡安装 CUDA 的过程,需遵循一系列特定的操作指南来确保兼容性性能优化。 #### 准备工作 确认操作系统环境已更新至最新状态并安装必要的依赖包。这通常涉及基础开发工具链内核头文件的准备[^1]。 #### 下载合适的驱动程序与 CUDA 版本 访问 NVIDIA 开发者网站获取适用于目标硬件平台(即 Tesla T4)及操作系统的 NVIDIA 驱动版本。同样地,在此站点可下载相匹配的 CUDA 工具包版本。例如,对于较新的 TensorFlow Tesla T4 支持情况,可能需要使用 CUDA Toolkit 12.1 更新版 1 来获得最佳支持[^2]。 #### 执行驱动安装命令 赋予所下载的 NVIDIA Linux x86_64 驱动二进制文件执行权限,并通过运行该脚本来完成驱动部署: ```bash chmod a+x NVIDIA-Linux-x86_64-550.54.15.run sudo ./NVIDIA-Linux-x86_64-550.54.15.run ``` 上述指令假设用户已经下载了指定编号的驱动程序;实际路径应根据实际情况调整。 #### 设置环境变量 为了使系统能够识别新安装CUDA 库位置,建议编辑用户的 shell 初始化脚本(如 `.bashrc` 或其他),加入如下设置语句以便永久生效: ```bash export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 此处 `/usr/local/cuda-12.1/` 是默认安装目录,请依据个人安装情况进行相应修改。 #### 测试安装成果 最后一步是验证 CUDA 是否成功安装及其功能是否正常运作。可以通过编译并执行官方提供的示例项目来进行初步测试,比如 `deviceQuery` `bandwidthTest` 程序可以用来检查 GPU 设备属性以及带宽表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值