hdu1535 Invitation Cards(spfa+反向建图)

本文详细解析了SPFA算法的应用场景,通过一个具体的竞赛题目示例,介绍了如何使用SPFA算法解决从一个起点到达多个目标点后再返回起点的最短路径问题。文章通过源代码展示了如何构建邻接矩阵与邻接表,并给出了从起点到所有点以及反向路径的最短距离计算方法。
摘要由CSDN通过智能技术生成


http://acm.hdu.edu.cn/showproblem.php?pid=1535

题意:某演员雇佣一些志愿者去一些站台做志愿活动,每一天他们要从起点CSS安检后到所有站台,安检后的所有路程就会有花费,且路程是单向的。做完活动又要返回CSS安检,结束一天的活动。求问这个演员最少需要花费多少。


思路:题意比较难理解,应该是阅读水平不够。从起点到所有点,再从所有点到起点的最小花费。前者好求,后者点数太多,不能一个一个求。考虑到这些点到起点和起点到这些点的距离相同,但是方向不一样,于是就反向建边。用邻接矩阵敲完才发现点数过多,只好又用邻接表敲一次。。


#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <queue>

using namespace std;

typedef long long LL;

const int N = 1000005;
const int INF = 0x3f3f3f3f;

int dis[N], pos, pos0, head[N], head0[N], n;
bool vis[N];

struct Edge
{
    int to, w, next;
}edge[N], edge0[N];

void add(int u, int v, int w)
{
    edge[pos] = (struct Edge){v, w, head[u]};
    head[u] = pos++;
}

void add0(int u, int v, int w)
{
    edge0[pos0] = (struct Edge){v, w, head0[u]};
    head0[u] = pos0++;
}


void spfa1(int s)
{
    memset(vis, false, sizeof(vis));
    queue<int>que;
    for(int i = 1; i <= n; i++)
        dis[i] = INF;
    dis[s] = 0;
    vis[s] = true;
    que.push(s);
    while(!que.empty())
    {
        int u = que.front();
        que.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if(dis[u]+edge[i].w<dis[v])
            {
                dis[v] = dis[u]+edge[i].w;
                if(!vis[v])
                {
                    vis[v] = true;
                    que.push(v);
                }
            }
        }
    }
}

void spfa2(int s)
{
    memset(vis, false, sizeof(vis));
    queue<int>que;
    for(int i = 1; i <= n; i++)
        dis[i] = INF;
    dis[s] = 0;
    vis[s] = true;
    que.push(s);
    while(!que.empty())
    {
        int u = que.front();
        que.pop();
        vis[u] = false;
        for(int i = head0[u]; i != -1; i = edge0[i].next)
        {
            int v = edge0[i].to;
            if(dis[u]+edge0[i].w<dis[v])
            {
                dis[v] = dis[u]+edge0[i].w;
                if(!vis[v])
                {
                    vis[v] = true;
                    que.push(v);
                }
            }
        }
    }
}

void init()
{
    pos = pos0 = 0;
    memset(head, -1, sizeof(head));
    memset(head0, -1, sizeof(head0));
}

int main()
{
  //  freopen("in.txt", "r", stdin);
    int t, m, u, v, w;
    scanf("%d", &t);
    while(t--)
    {
        init();
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d%d", &u, &v, &w);
            add(u, v, w);
            add0(v, u, w);
        }
        int sum = 0;
        spfa1(1);
        for(int i = 1; i <= n; i++)
            sum+=dis[i];
        spfa2(1);
        for(int i = 1; i <= n; i++)
            sum+=dis[i];
        printf("%d\n", sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值