opencv使用findContours进行轮廓检测时报错:not enough values to unpack (expected 3, got 2)

opencv使用findContours进行轮廓检测时报错:not enough values to unpack (expected 3, got 2)

网络上很多opencv的教程用的都是3.4.1之前的版本,在进行轮廓查找时:

cloneImage,contours,heriachy=cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE) 

其中:
第一个返回值:cloneImage是我们传入的二值化图像
第二个返回值:contours是一个列表,是轮廓本身,含有轮廓上面的各个点的位置信息
第三个返回值:heriachy是每条轮廓对应的属性


而在3.4.1之后的版本中要使用findContours进行轮廓检测时:

contours,heriachy=cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)

cloneImage是不用返回的,因此会提示需要两个返回值,用户却键入了三个返回值.

以下为3.4.1版本之后轮廓检测的源码:

#轮廓发现:

import cv2 as cv
import numpy as np


def edge_demo(image):
    blurred = cv.GaussianBlur(image, (3, 3), 0)  # 模糊    为了降低噪声因为Canny对噪声敏感,blur的程度要适中,太过了边缘会受到影响
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)  # 转成灰度图
    xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0)##!!!!!!canny方法API要求不允许使用浮点数
    ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
    edge_output = cv.Canny(gray, 50, 150)            #直接调用Canny算法在单通道灰度图像中查找边缘,
    cv.imshow("Canny Edge",edge_output)
    return edge_output




def contours_demo(image):
    # 方法一:通过二值化    适用于内部颜色复杂的图像:
    #直接使用与之方法threshold方法获取二值化图像来选择轮廓
    dst=cv.GaussianBlur(image,(3,3),0)     #用高斯模糊去除一些噪点
    gray=cv.cvtColor(dst,cv.COLOR_BGR2GRAY)
    ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)
    cv.imshow("binaryimage",binary)


    ##方法二:通过边缘提取   使用与内部颜色较为单一的图像:
    #使用Canny边缘检测来获取二值化图像
    # binary=edge_demo(image)

    #findContours寻找轮廓(输入图像,轮廓检索模式,轮廓近似方法)
    # 第一个返回值:cloneImage是我们传入的二值化图像
    # 第二个返回值:contours是一个列表,是轮廓本身,含有轮廓上面的各个点的位置信息
    # 第三个返回值:heriachy是每条轮廓对应的属性
    contours,heriachy=cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)       #RETE_TREE包含内部检测    RETR_EXTERNAL只显示外轮廓
    for i,contour in enumerate(contours):           #enumerate:容器
        # def drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None,
        #                  maxLevel=None, offset=None)    绘制轮廓
        # 1.image: 输入输出图像,Mat类型即可
        # 2.contours: 使用findContours检测到的轮廓数据,每个轮廓以点向量的形式存储
        # 3.contourIdx: 绘制轮廓的只是变量,如果为负值则绘制所有输入轮廓
        # 4.color: 轮廓颜色
        # 5.thickness: 绘制轮廓所用线条粗细度,如果值为负值,则在轮廓内部绘制
        cv.drawContours(image,contours,i,(0,0,255),-1)     #参数为负数可以进行填充  正数就是轮廓的粗细
        print(i)
    cv.imshow("detect contours",image)






print("-----------Hello Opencv-------------")
src = cv.imread("D:/pythonprograms/tutorial1/images/detect_circle_demo.png")
cv.namedWindow("This is a image", cv.WINDOW_AUTOSIZE)
cv.imshow("This is a image",src)
contours_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

<think>嗯,用户遇到了相机标定的错误,提示“not enough values to unpack (expected 5, got 4)”。我需要先理解这个错误的原因。通常这种错误发生在Python中解包元组或列表,预期的变量数量与实际数量不匹配。 首先,用户可能在调用某个标定函数,比如OpenCV中的`cv2.calibrateCamera`,返回的参数数量与预期不符。OpenCV的不同版本可能会影响返回值的数量。例如,在较新的版本中,`calibrateCamera`可能返回更多的参数,或者某些参数被重新排序了。 接下来,我需要确认用户使用OpenCV版本。比如,在4.5版本之后,`calibrateCamera`的返回值发生了变化,增加了RMS误差作为第一个返回值。如果用户代码是基于旧版本的,预期接收5个参数,但新版本返回了4个,就会导致这个错误。 另外,用户可能在解包返回值使用了类似`ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(...)`的代码,而实际返回的可能结构不同。比如,如果ret被移到了前面,或者某个参数被移除了,就会导致数量不匹配。 解决方法可能是检查OpenCV的版本,调整解包顺序,或者使用更灵活的变量接收方式,比如将返回值存入一个变量,再按索引访问。同,用户需要确保代码与当前安装的OpenCV版本兼容。 此外,用户可能需要查看官方文档,确认当前版本的函数返回值结构,确保解包的变量数量与返回值一致。还要注意其他可能涉及的函数,比如`cv2.initCameraMatrix2D`是否存在返回值变化。 总结来说,问题的核心在于函数返回值的数量与用户代码中的解包变量数量不一致,可能由版本差异引起。解决方法包括调整代码以适应版本变化,或固定OpenCV的版本。</think>### 相机标定错误 &#39;not enough values to unpack (expected 5, got 4)&#39; 解决方案 #### 问题原因 该错误通常发生在使用OpenCV进行相机标定,函数返回值数量与代码预期不一致,主要与OpenCV版本差异相关。例如: - OpenCV 4.5+ 版本中,`cv2.calibrateCamera` 的返回值新增了RMS误差作为第一个返回值[^2] - 旧版本代码可能按照`ret, mtx, dist, rvecs, tvecs = calibrateCamera(...)`格式解包,而新版本实际返回`rms, mtx, dist, rvecs, tvecs` #### 解决方法 1. **检查OpenCV版本** ```python import cv2 print(cv2.__version__) # 确认是否为4.5+版本 ``` 2. **修改解包方式** ```python # 新版本正确写法(返回5个参数) rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(...) # 兼容性写法(接收全部返回值) retval, cameraMatrix, distCoeffs, rvecs, tvecs = cv2.calibrateCamera(...) ``` 3. **版本降级(临方案)** ```bash pip install opencv-python==4.4.0.46 ``` #### 关键参数说明 | 参数名 | 类型 | 说明 | |--------------|---------------|-----------------------| | rms | float | 重投影误差的均方根值 | | cameraMatrix | ndarray | 3x3相机内参矩阵 | | distCoeffs | ndarray | 畸变系数向量 | #### 完整标定流程验证 ```python # 标定核心代码示例 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( object_points, image_points, image_size, None, None ) # 若报错则改为: rms, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(...) ``` #### 其他可能触发同类错误的情况 1. `cv2.initCameraMatrix2D` 的返回值变化 2. 棋盘格角点检测函数`findChessboardCorners`返回值格式变化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值