【数据结构与算法】之深入解析“并行课程”的求解思路与算法示例

本文深入解析了如何解决‘并行课程’的问题,介绍了使用状态压缩和动态规划的算法思路。首先,文章阐述了题目的要求,即根据课程的先修关系和最大可选课程数k,确定完成所有课程所需的最短学期数。接着,详细讲解了状态压缩的方法,包括统计二进制中1的个数、判断子集关系等操作,并提供了Java和C++的实现示例。此外,还探讨了状压DP的解决方案,解释了如何通过枚举课程集合和考虑课程依赖关系来优化时间复杂度。
摘要由CSDN通过智能技术生成

一、题目要求

  • 给你一个整数 n 表示某所大学里课程的数目,编号为 1 到 n,数组 dependencies 中,dependencies[i] = [xi, yi] 表示一个先修课的关系,也就是课程 xi 必须在课程 yi 之前上,同时你还有一个整数 k。
  • 在一个学期中,你最多可以同时上 k 门课,前提是这些课的先修课在之前的学期里已经上过。请你返回上完所有课最少需要多少个学期,题目保证一定存在一种上完所有课的方式。
  • 示例 1:

在这里插入图片描述

输入:n = 4, dependencies = [
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

╰つ栺尖篴夢ゞ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值