pytorch实现梯度反转层(Gradient Reversal Layer)(正确代码)


该文章是对
https://blog.csdn.net/MaXumr/article/details/119540804
这篇博文的一个修正。
这篇博文讲的没问题,但是贴的测试代码有问题。因此重新写了一个测试代码。

把下面的代码运行即可。

def check_GRL():
    '''
    检查GRL层的有效性。
    :return:
    '''
    from torch.autograd import Function
    from typing import Any, Optional, Tuple
    import torch.nn as nn
    import torch
    import torch.nn.functional as F
    ## 定义梯度反转函数
    class GradientReverseFunction(Function):
        """
        重写自定义的梯度计算方式
        """

        @staticmethod
        def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
            ctx.coeff = coeff
            output = input * 1.0
            return output

        @staticmethod
        def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
            return grad_output.neg() * ctx.coeff, None

    class GRL_Layer(nn.Module):
        def __init__(self):
            super(GRL_Layer, self).__init__()

        def forward(self, *input):
            return GradientReverseFunction.apply(*input)

    class NormalClassifier(nn.Module):

        def __init__(self, num_features, num_classes):
            super().__init__()
            self.linear = nn.Linear(num_features, num_classes)
            self.grl = GRL_Layer()

        def forward(self, x):
            return self.linear(x)

        def grl_forward(self,x):
            x = self.linear(x)
            x = self.grl(x)
            return x

    net1 = NormalClassifier(3, 6)
    net2 = NormalClassifier(6, 10)
    net3 = NormalClassifier(10, 2)

    data = torch.rand((4, 3))
    label = torch.ones((4), dtype=torch.long)
    out = net3(net2(net1(data)))
    loss = F.cross_entropy(out, label)
    loss.backward()
    print("第一次前向传播,没有GRL层")
    print('net1.linear.weight.grad', net1.linear.weight.grad)
    print('net2.linear.weight.grad', net2.linear.weight.grad)
    print('net3.linear.weight.grad', net3.linear.weight.grad)

    #############3
    print("第二次前向传播,没有GRL层")
    net1.zero_grad()
    net2.zero_grad()
    net3.zero_grad()

    out = net3(net2(net1(data)))
    loss = F.cross_entropy(out, label)
    loss.backward()
    print('net1.linear.weight.grad', net1.linear.weight.grad)
    print('net2.linear.weight.grad', net2.linear.weight.grad)
    print('net3.linear.weight.grad', net3.linear.weight.grad)

    print("第一二次,梯度相同。 证明当X输入不变的时候,对于同一个loss值,计算的梯度数值总是相同。")


    print("第三次: -------- 验证GRL")
    net1.zero_grad()
    net2.zero_grad()
    net3.zero_grad()

    out = net3(net2(net1.grl_forward(data)))  ## 这里 net1先经过 linear,再经过GRL
    ## 网络前向: Net1--->  GRL ---> net2--->  net3
    ## 网络反向:  net3---->  net2 ----> GRL--->  net1
    loss = F.cross_entropy(out, label)
    loss.backward()
    print('net1.linear.weight.grad', net1.linear.weight.grad)
    print('net2.linear.weight.grad', net2.linear.weight.grad)
    print('net3.linear.weight.grad', net3.linear.weight.grad)


    print("可以看到 第三次打印的net1的梯度和第一次 互反")

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.3.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值