深度学习图像预处理 保持原尺寸比例

在深度学习中,当预训练模型的输入尺寸与实际图像不符时,需要进行图像填充以保持比例。本文介绍了使用CV2和PIL库实现保持原图像比例的填充方法,确保填充部分的网络输入值为0。预处理步骤包括将图像归一化到(-1, 1)区间,并进行相应填充。" 127743693,13980606,Squid代理服务器配置及缓存原理,"['前端', '缓存', '服务器']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在迁移学习的时候,如果pre-trained model的输入图像比例与我们需要输入的图像比例相差加大时就需要对原图像进行padding操作。
关键思想:保持现有图像数据的尺寸比例不变,对其余部分按照网路输入预处理格式进行填充,使得此paddig部分对应网络输入0。

比如,原图像除以255,减0.5,乘以2,即映射到(-1,1)区间的预处理操作,我们能就需要填充int(256/2)左右的值,使得网络对应的输入数值为0。

CV2实现

import cv2
import numpy as np

def image_preporcess(image, target_size):

    # resize 尺寸
    ih, iw = target_size
    # 原始图片尺寸
    h,  w, _ = image.shape

    # 计算缩放后图片尺寸
    scale = min(iw/w, ih/h)
    nw, nh = int(scale * w), 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值