计算机视觉
文章平均质量分 92
老光头_ME2CS
机械转计算机视觉的光头老僧
展开
-
python cv2读写灰度(黑白)视频的技巧
最近发现一个opencv的trick,记录一下cv2读取灰度视频cap = cv2.VideoCapture(video_name) while True: status, data = cap.read() if not status: break cv2.resize(data,(nw, nh)) cv2.imwrite(img_path, data) cap.release()注意读取灰度视原创 2020-07-21 22:02:48 · 4046 阅读 · 0 评论 -
深度学习图像预处理 保持原尺寸比例
在迁移学习的时候,如果pre-trained model的输入图像比例与我们需要输入的图像比例相差加大时就需要对原图像进行padding操作。关键思想:保持现有图像数据的尺寸比例不变,对其余部分按照网路输入预处理格式进行填充,使得此paddig部分对应网络输入0。比如,原图像除以255,减0.5,乘以2,即映射到(-1,1)区间的预处理操作,我们能就需要填充int(256/2)左右的值,使得网络对应的输入数值为0。CV2实现import cv2import numpy as npdef i原创 2020-07-21 10:19:09 · 1895 阅读 · 0 评论 -
FlowNet2 torch 代码运行经验
FlowNet2是目前最流行的网络,原文中使用的是CAFFE进行训练的网络。在GITHUB上最火的是NIVDIA官方给出的代码。运行的时候需要一些操作技巧,对于linux可能不太友好,在这记录一下。NIVDIA官方代码https://github.com/NVIDIA/flownet2-pytorch运行环境要求由于是已经给出NIVDIA给出的网络,程序代码都封装的比较好了,主要通过main.py的参数,既可以实现网络的调整。首先操作系统的运行环境最好是Linux,因为其中不少代码写成的.sh。w原创 2020-07-20 12:07:53 · 5887 阅读 · 29 评论 -
Tensorflow2.*环境 YOLOV4代码
亲测window10系统Tensorflow2.0.0、 2.1.0、 2.1.0环境 YOLOV4代码,十分好用。从GitHub链接,clone到本地后安装两个程序包pip install tensorflow_addons==0.9.1pip install easyedict下载权重文件下载yolov4.weights文件,并放到./data/yolov4.weights目录下链接:https://pan.baidu.com/s/1B_4GU5TtLsOhOlNKFHVx0g提取码原创 2020-06-25 12:19:16 · 3381 阅读 · 3 评论 -
Tensorflow2.* Keras 视频5维输入 shape调整 tf.reshape()
视频输入问题传统的图像网络的输入数据格式input_shape =(batch, h, w, c),但对于视频输入(batch, number_frames, h, w, c)。我们在keras建模的时候batch_size默认为input_shape[0],无法改变,同时keras.layers.Conv2d等层操作也是按照4维张量处理输入输入。解决方案一:维度切片堆叠(不推荐)在模型搭建的过程中,在number_frames维度进行堆叠,即在喂给keras.layers.Conv2d前将数据按nu原创 2020-06-20 22:16:44 · 1510 阅读 · 0 评论 -
Tensorflow2.0 keras ResNet18 34 50 101 152系列 代码实现
模型介绍参看:博文可以产出ResNet系列最多层数达到了152层,但是基本结构可以分为四个模块,即特征层分别为64,128,256,512的卷积层block;每个卷积层block中如上图,由两组卷积层由两层卷积核大小为3x3组成,每一层采取了标准化(normalization)处理,激活函数是relu,第二个relu在残差处理后进行;但是根据不同深度, 每个卷积层模块的block数量存在差异,可以分为两组(18,34)与(50,101,152);因此建立基本模块类建立ResNet是更优的选择。原创 2020-05-15 17:02:18 · 9410 阅读 · 3 评论 -
Tensorflow 2.0 视频分类(二) UCF-101数据集预处理
关于UCF-101介绍请参看:数据下载下载路径:http://crcv.ucf.edu/data/UCF101/UCF101.rar解压后就是分类数据集的标准目录格式,二级目录名为人类活动类别,二级目录下就是对应的视频数据。每个视频长度为4s,大小320*240, 帧率25HZ需要注意是相同的活动下,参考https://blog.coast.ai/five-video-classifi...原创 2020-05-14 20:25:22 · 3932 阅读 · 12 评论 -
Tensorflow 2.0 视频分类(一) 数据集
数据集UCF-101(最常见)2013年中央佛羅里達大學(UCF) center for research in computer vision发布从YouTube上爬的101类人员运动识别数据集。ICCV’13 运动识别竞赛的Benchmark关键参数共有13320个视频片段,分为25个组,每个组再分为4-7个视频类,共组成101类:The action categories for...原创 2020-05-14 20:19:05 · 1271 阅读 · 0 评论 -
python opencv 箭头 cv2.arrowedLine
直接上代码如下:import numpy as np import cv2import matplotlib.pyplot as pltMask = 255*np.ones((100,100,3), dtype=np.int)Mask = np.array(Mask, dtype='uint8')cv2.arrowedLine(Mask,(0,0), (80,80), (0,0,255...原创 2020-05-05 18:12:52 · 7364 阅读 · 0 评论 -
Tensorflow2.0 卷积神经网络可视化 (三)类激活热力图 (CAM,class activation map)
在神经网络分别中,我们不仅想知道最终预测结果,还需要了解网络是凭借图像什么特征进行判断的。其中类激活热力图 (CAM,class activation map)就是一种很好的呈现方式。目录标题类激活热力图 (CAM,class activation map)导入ImageNet VGG16网络加载任一图片构建多特征层输出模型应用Grad-CAM 算法绘制激活热力图前三类结果比较参考类激活热力图...原创 2020-05-03 14:45:42 · 10296 阅读 · 15 评论 -
Tensorflow2.0 卷积神经网络可视化 (一)中间特征层可视化
目录标题中间特征层可视化导入ImageNet VGG16网络加载任一图片构建多特征层输出模型所有中间层的显示参考中间特征层可视化导入ImageNet VGG16网络导入基础包import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tf导入ImageNet VGG16网络VGG16_model = ...原创 2020-05-02 21:13:32 · 9728 阅读 · 18 评论 -
Tensorflow2.0 自定义图像数据集 读取加速 tf.data.Dataset.cache (二)
接上一篇Tensorflow2.0 tf.data.Dataset.from_tensor_slices 自定义图像数据集 (一要这里写目录标题Tensorflow图像数据集加载图片路径和标签读取图像预处理创建Tensorflow Dataset对象方案一(不推荐)方案二(推荐)Dataset对象的预处理输入网络Pytorch参考Tensorflow图像数据集加载从tf.keras...原创 2020-05-01 21:52:56 · 3531 阅读 · 0 评论 -
初学者 深度学习 人工神经网络 可视化网站
手写数字卷积神经网络可视化https://www.cs.ryerson.ca/~aharley/vis/conv/LeNet-5网络结构二维数据集的在线网络训练playground.tensorflowhttp://playground.tensorflow.org/高维降维可视化projector.tensorflowhttps://projector.tensorflow....原创 2020-04-20 13:39:32 · 2876 阅读 · 3 评论 -
深度学习 机器视觉 经典卷积神经网络 Tensorflow2.0 keras.applications
背景经典网络结构就是我们使用深度学习进行烹饪的食材,活学活用好我们的经典神经网络,为我们的实际应用提供事半功倍的效果经典的深度卷积神经网络作为机器视觉中图像特征提取的重要工具,被广泛应用于图像分类、语义分割和目标检测等实际场景中。2012到2017年的I全球最大的ImageNet大赛中涌现了一大批性能突出的网络,基于此数据集训练的卷积神经网络被认为具有突出的图像特征提取的功能。由于一般的个...原创 2020-04-22 19:47:15 · 4847 阅读 · 0 评论 -
机器视觉 注意机制 SENet CBAM
人眼视觉感知中的注意力特性人眼视觉具有中间凹, 需要对焦,存在视觉焦点人眼具有自顶向下和自底向上两种注意机制计算机视觉感知中的注意特性SENet:Squeeze-and-Excitation Networks论文:http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks...原创 2020-04-24 11:46:10 · 1247 阅读 · 1 评论