【seaborn】kdeplot用法 & 核密度估计(KDE)原理介绍

本文介绍了核密度估计(Kernel Density Estimation, KDE)的基本原理,它是非参数估计连续数据密度的方法。seaborn库的kdeplot函数用于实现KDE,通过调整带宽参数bw和bw_adjust可以控制曲线的平滑程度。文中通过实例解释了带宽选择的重要性,并探讨了不同带宽设置对曲线形状的影响。" 111548043,10325044,OpenCV C++ imread 图片读取问题及解决,"['OpenCV', 'C++编程', '图像处理', '库管理', '调试技巧']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核密度估计(Kernel Density Estimation)

定义

核密度估计是估计随机变量的概率密度函数的非参数方法,即一种针对连续数据的密度估计方法,并且其根据数据本身的相互关系得到,无需对数据分布做假设
假设样本彼此独立并遵循相同的分布。给定带宽H,每个样本都由平滑的核函数拟合。某数据的密度值可以视为其他所有样本对该数据的平均影响。
f ^ h ( x ) = 1 n ∑ i = 1 n K h ( x − x i ) = 1 n h ∑ i = 1 n K ( x − x i h ) \widehat{f}_{h}(x)=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) f h(x)=n1i=1nK

### 关于核密度估计(KDE)大作业的资源与示例 #### 核密度估计简介 核密度估计是一种用于估计随机变量概率密度函数的方法。它属于非参数统计方法的一种,能够平滑地表示数据分布情况而不依赖特定的概率模型假设[^1]。 #### 实现核密度估计Python库 Scikit-Learn、Seaborn 和 SciPy 是 Python 中常用的实现核密度估计功能的库。其中 Seaborn 提供了简单易用的接口来创建美观的可视化图表;SciPy 则提供了底层算法支持;而 Scikit-Learn 更加侧重于机器学习应用中的特征工程部分[^2]。 #### 使用Seaborn绘制KDE图 下面是一个简单的例子展示如何利用 Seaborn 库绘制一维和二维的核密度估计图像: ```python import seaborn as sns import matplotlib.pyplot as plt # 加载内置鸢尾花数据集 iris = sns.load_dataset('iris') # 绘制单变量核密度估计图 plt.figure(figsize=(8, 6)) sns.kdeplot(data=iris['sepal_length'], shade=True) plt.title('Univariate Kernel Density Estimate') plt.show() # 绘制双变量核密度估计图 plt.figure(figsize=(8, 6)) sns.kdeplot(data=iris, x="sepal_width", y="petal_length", cmap="Blues", fill=True) plt.title('Bivariate Kernel Density Estimate') plt.show() ``` 上述代码片段展示了怎样通过调用 `sns.kdeplot()` 函数分别生成一维和二维的核密度估计图形,并设置了阴影填充效果以及颜色映射表等样式选项。 #### 寻找更多教程资源 为了完成高质量的大作业项目,建议查阅官方文档获取最新最权威的信息。以下是几个推荐的学习资源链接: - [Seaborn 官方网站](https://seaborn.pydata.org/) - [Scikit-Learn 用户指南 - 密度估计](https://scikit-learn.org/stable/modules/density.html)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值