对餐饮数据进行处理基于Python

对餐饮数据进行处理基于Python

餐饮网页数据源

#coding:utf-8

# 导入必要的模块

import pandas as pd
import numpy as np
import re
# 读取网页数据源

df = pd.read_csv(url,delimiter='\t')

print(df)
# 将餐名统一格式化
change_n = lambda x : str(re.sub('[^a-zA-Z0-9]',' ',x))

df.item_name = df.item_name.apply(change_n)
print(df.item_name)
# 将餐饮价格由str转化float类型
change_p = lambda x : float(x[1:])

df.item_price = df.item_price.apply(change_p)
# 统计每种套餐的销售数量

df = pd.pivot_table(df,values=['quantity'],index=['item_name'],aggfunc=np.sum)

print(df)
# 统计每种套餐的平均价钱

df = pd.pivot_table(df,values=['item_price'],index=['item_name'],aggfunc=np.mean)
print(df)
基于Python餐饮数据分析的文件有以下几类: 1. 数据收集和清洗文件:这些文件用于从各种数据源(例如POS系统、在线订购平台、营销活动等)收集数据,并进行数据清洗和预处理。常见的文件包括Python脚本或Jupyter Notebook,用于爬取网页数据、读取CSV或Excel文件,并进行数据清洗、去重、缺失值处理等操作。 2. 可视化和探索性分析文件:这些文件主要用于可视化和探索性分析,帮助餐饮业主或数据分析师了解数据背后的趋势和关联。常见的文件包括Python数据可视化库(如Matplotlib、Seaborn、Plotly等)的使用示例,用于绘制柱状图、线图、散点图等,展示销售趋势、顾客行为等信息。 3. 数据建模和预测文件:这些文件用于基于历史数据进行预测和建模,帮助餐饮业主对未来的销售和需求做出预测,以便进行合理的财务计划和库存管理。常见的文件包括Python的机器学习库(如Scikit-learn、TensorFlow等)的使用示例,用于构建回归模型、时间序列模型等,进行销售预测和需求预测。 4. 实时数据监控和报表文件:这些文件用于实时监控和生成数据报表,帮助餐饮业主了解当前的业务状况和业绩表现。常见的文件包括Python数据处理库(如Pandas、Numpy等)的使用示例,用于计算关键指标(如销售额、客单价等)并生成实时报表。 以上是基于Python餐饮数据分析常见的文件类型,这些文件可以帮助餐饮业主或数据分析师更好地理解和利用餐饮数据,以便做出更加明智的决策和优化业务流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值