1.3聚类(clustering)

本文详细介绍了Spark MLlib中的几种聚类算法,包括K均值(KMeans)、二分K均值(Bisecting K Means)、高斯混合(Gaussian Mixture)、隐含狄利克雷分布(LDA)以及幂迭代聚类(PIC)和流式K均值(Streaming K Means)。KMeans++是一种优化KMeans初始中心点选择的方法,而二分K均值通过逐步划分簇来避免局部最优。高斯混合模型提供了一种用概率分布表示数据点归属的方法。LDA是一种主题模型,用于识别文档中的主题。幂迭代聚类和谱聚类类似,但使用不同的方法生成低维子空间。流式K均值则适应实时数据处理需求。
摘要由CSDN通过智能技术生成

1.3 聚类(clustering)

1.3.1 K均值(K Means)

KMeans算法的基本思想是初始随机给定K个簇中心,按照最近邻原则把待分类样本定分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。

KMeans聚类算法主要分为3个步骤:

  1. 为待聚类的点寻找聚类中心。
  2. 计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去。
  3. 计算每个聚类中所有点的坐标平均值,将这个平均值作为新的聚类中心。

反复执行2),3),直到聚类中心移动距离小于给定值或者聚类次数达到要求为止。

对于初始化中心点,随机选择初始中心点可能会造成聚类的结果和数据的实际分布相差很大。KMeans++就是选择初始中心点的一种算法,其基本思想就是:初始的聚类中心之间的距离要尽可能的远。

KMeans++选择初始中心点算法过程:

  1. 随机选择一个点为第一个聚类中心点。
  2. 对于数据集中每一个点x,计算它与最近聚类中心点的距离D(x)。
  3. 选择新的数据点为新的聚类中心,选择原则是:D(X)较大的点,选取概率较大。
  4. 重复2),3),直到k个聚类中心被选出。

1.3.2 二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值