Power Iteration (幂迭代) 算法与证明

Power Iteration是线性代数中用于近似求解矩阵主特征值和特征向量的算法。在大规模数据处理时,作为特征分解的高效替代方案。通过不断迭代,最终得到的向量近似主特征向量,使用瑞利商公式可求得特征值。文章还详细证明了当矩阵可对角化且有主特征值时,该算法的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景与算法

Power Iteration是线性代数中的一种经典算法,主要用于近似求解矩阵的主特征值和特征向量。

对于一个可对角化的矩阵A,对其进行特征分解可以得到特征值和特征向量,如果在A的所有特征值中存在|\lambda_1|>|\lambda_i| for all i=2,3,...,n,则\lambda_1称为矩阵的主特征值,对应的特征向量则称为主特征向量。主特征值和特征向量中通常包含矩阵中的重要信息。在对大规模数据进行处理时,直接进行特征分解耗时较长,可以考虑使用Power Iteration来进行近似求解。算法的主要流程如下:

  • 随机初始化向量x_0
  • x_1=Ax_0
  • x_2=AAx_0=A^2x_0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值