努力干活还不粘人的小妖精
码龄5年
  • 169,387
    被访问
  • 41
    原创
  • 24,575
    排名
  • 22
    粉丝
关注
提问 私信

个人简介:xioapiha

  • 加入CSDN时间: 2017-04-20
博客简介:

qq_38402294的博客

查看详细资料
  • 3
    领奖
    总分 371 当月 32
个人成就
  • 获得56次点赞
  • 内容获得17次评论
  • 获得284次收藏
创作历程
  • 3篇
    2022年
  • 8篇
    2021年
  • 8篇
    2020年
  • 20篇
    2019年
  • 4篇
    2017年
成就勋章
TA的专栏
  • 图表示学习
    2篇
  • 线性代数
    2篇
  • 迁移学习
    2篇
  • pytorch
    1篇
  • 概率统计
    1篇
  • ros
    3篇
  • c++
    1篇
  • R  RStudio
    6篇
  • 机器学习
    10篇
  • python
    9篇
  • pycuda
    5篇
  • Web开发
    3篇
  • linux
    8篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Graph Representation Learning (Hamilton图表示学习)笔记(二)

Chapter 2 Background and Traditional Approaches本章主要介绍了一些在深度学习之前用于图数据的机器学习方法。2.1 Graph Statistics and Kernel Methods
原创
发布博客 5 小时前 ·
6 阅读 ·
0 点赞 ·
0 评论

Graph Representation Learning (Hamilton图表示学习)笔记(一)

​Chapter 1 Introduction第一章主要是一些介绍性的内容。图是在描述复杂系统时一种常见的数据结构,通常一张图由节点的集合和节点之间的关系(边)组成。例如,在用图表示社交网络时,我们可以用节点表示个体,用边表示不同个体间的朋友关系(如下图所示);在生物领域我们可以用节点表示蛋白质,用边表示蛋白质间的各种生物关系。图结构的优势在于它能比较好的表示节点间的关系,同时具有较强的通用性和一般性,同一张图可能既能表示社交网络,又能表示药物和蛋白质间的关系、分子内部的不同原子间的相互作用。本
原创
发布博客 前天 11:41 ·
19 阅读 ·
0 点赞 ·
0 评论

Power Iteration (幂迭代) 算法与证明

一、背景与算法Power Iteration是线性代数中的一种经典算法,主要用于近似求解矩阵的主特征值和特征向量。对于一个可对角化的矩阵A,对其进行特征分解可以得到特征值和特征向量,如果在A的所有特征值中存在 for all ,则称为矩阵的主特征值,对应的特征向量则称为主特征向量。主特征值和特征向量中通常包含矩阵中的重要信息。在对大规模数据进行处理时,直接进行特征分解耗时较长,可以考虑使用Power Iteration来进行近似求解。算法的主要流程如下:随机初始化向量 ... u
原创
发布博客 2022.04.25 ·
339 阅读 ·
0 点赞 ·
2 评论

帮帮我吧,刚接触不明白

答:

1.

#include<iostream>
using namespace std;
int main()
{
  int sum=0;
  for (int i=1; i<=n; i++){
    if (i%2!=0){
      sum+=i;
    }
    else{
      sum-=i;
  }
  }
  cout<<sum;
}
回答问题 2021.12.21

linux服务器ssh登录缓慢

在使用linux服务器时,经常要用到ssh远程登录,有的时候会发现在输入登录密码后需要等较长时间才能成功登录,有的教程中指出可以修改系统配置文件,设置为登录时不使用DNS,然后再重启sshd服务,但很有可能并没有作用。甚至修改完配置文件之后,sshd服务并不能正常重启,会报以下错误:错误信息中提示检查polkit服务是否正常运行。此时考虑有可能是身份认证系统存在问题。polkit是linux系统中的身份认证管理工具,如果它不能正常运行的话,会导致在登录进行身份验证时进行较长时间的申请,从而导致登录缓
原创
发布博客 2021.11.17 ·
344 阅读 ·
0 点赞 ·
0 评论

linux系统polkit无法启动

polkit是linux系统中的一个身份认证管理工具 (Authorization Manager ),在启动一些服务时,有可能会遇到polkit不能正常启动运行的情况,会报出以下错误:查看polkit的运行状态发现是failed:此时发现polkit并没有处于正常的激活状态,由此可能会导致其他一些服务也不能正常启动。首先可以尝试使用以下命令重装polkit再启动:yum reinstall polkitsystemctl start polkit.service运气好的话.
原创
发布博客 2021.11.17 ·
4076 阅读 ·
1 点赞 ·
0 评论

Linux开关键盘背光灯

终端输入以下命令打开背光灯:xset led named "Scroll Lock"输入以下命令关闭:xset -led named "Scroll Lock"
原创
发布博客 2021.09.17 ·
123 阅读 ·
0 点赞 ·
0 评论

这是为什么鸭

答:

变量名有问题。由于已经将 [1, 2, 3] 命名为list,后边再想用list将结果转为列表时,系统认为你要调用list这个变量,因此会报错 not callable。

只需将变量名修改为任何不同于 list 的名字即可正常运行。

回答问题 2021.05.15

为什么我的c++程序只输出一个结果?

答:

fun2 return之前先cout一下

回答问题 2021.04.01

大佬们,C语言的if用法是这样么

答:

if 后边的内容加上{}就对了

回答问题 2021.03.06

centos 下 R 安装 devtools 报错:<stdin>:1:18: 致命错误:git2.h:没有那个文件或目录

devtools是R中的一个常用工具,可以使用 devtools::install_github() 命令来安装github上的一些包。首先直接通过安装命令进行安装:install.packages("devtools")此时可能会报错:<stdin>:1:18: 致命错误:git2.h:没有那个文件或目录这是由于缺少相关的依赖造成的,此时退出R,在终端下执行如下操作安装所需依赖:yum install libgit2-devyum -y install libcur
原创
发布博客 2021.01.15 ·
542 阅读 ·
0 点赞 ·
0 评论

centos 报错:libgfortran.so.4: 无法打开共享对象文件: 没有那个文件或目录

yum install libfortran4
原创
发布博客 2021.01.14 ·
568 阅读 ·
0 点赞 ·
0 评论

Linux(CentOS, ubuntu)报错:libpng16.so.16: 无法打开共享对象文件: 没有那个文件或目录

linux系统在安装一些包或者配置环境时,可能会遇到以下错误:libpng16.so.16: 无法打开共享对象文件: 没有那个文件或目录ubuntu系统和centos系统的解决方案是不一样的:ubuntu系统可以直接安装 sudo apt-get install libpng16-16 centos系统可以先尝试直接安装 yum install libpng-devel 但此时安装的可能是libpng15,不能满足要求,此时执行以下操作: wget https:.
原创
发布博客 2021.01.14 ·
2222 阅读 ·
0 点赞 ·
0 评论

python使用pandas获取数据行名和列名

python使用pandas读取csv数据:import pandas as pddf = pd.read_csv("filename.csv")获取数据部分:data = df.values获取行名:rownames = df.index获取列名:colnames = df.columns
原创
发布博客 2021.01.07 ·
7693 阅读 ·
4 点赞 ·
0 评论

R读取.rds文件

data <- readRDS("filename.rds")
原创
发布博客 2021.01.06 ·
8418 阅读 ·
3 点赞 ·
0 评论

领域自适应论文总结系列(二)

引言上一节主要介绍了通过分布匹配来解决领域自适应问题的方法,主要是在神经网络中添加距离约束,利用MMD等距离度量使得源域和目标域的数据经过网络后得到的特征分布比较相似,从而可以使得在源域上学到的模型能更好的迁移到目标域。领域自适应问题的关键就在于如何使得源域和目标域的数据更好的进行分布匹配,这一点除了可以通过MMD等距离约束实现,也可以使用对抗训练的思想,这也是本文将要介绍的重点内容。一、DANN (RevGrad)较早的使用对抗训练思想解决领域自适应问题的研究是Yaroslav Ganin等人
原创
发布博客 2020.12.23 ·
998 阅读 ·
0 点赞 ·
2 评论

ubuntu下R语言安装Seurat包

Seurat是基因表达数据的预处理中常用的包,安装过程如下:如果是安装最新的4.0版本,可以直接使用remotes命令通过github链接安装:remotes::install_github("satijalab/seurat", ref = "release/4.0.0")如果remotes命令不可用,要先安装remotes包:install.packages("remotes")如果是安装2.3版本,则按照以下步骤:首先安装devtools包:install.packa
原创
发布博客 2020.12.17 ·
1621 阅读 ·
1 点赞 ·
0 评论

python读取.mtx文件

mtx文件是按照稀疏矩阵格式存储的矩阵数据,可以按照以下步骤读取:安装scanpy包 pip install scanpy 文件读取 import scanpy as scadata = sc.read(filename)data = adata.X 第一行read之后返回的是annData,第二行通过.X操作得到的是矩阵数据 转换为稠密矩阵 data = data.todense() 直接得到的矩阵是稀疏形式的,通过todense函数可转换为稠密矩阵.
原创
发布博客 2020.12.10 ·
2113 阅读 ·
3 点赞 ·
5 评论

领域自适应论文总结系列(一)

引言领域自适应是迁移学习中的一类重要问题,主要解决当训练集和测试集的数据分布存在偏差时,如何使得训练出的分类器更好的适应测试集上的数据。早期的基于统计学习等浅层模型的做法主要是先设计一套特征提取方法,然后对训练集和测试集的特征进行分布匹配,此时再将分类器用到测试集上会取得更好的预测效果。但是这种分步式的操作效果还是比较有限的,不能同时兼顾数据分布和分类器的训练,要想实现端到端的在数据分布差异约束下进行分类训练,就要依靠神经网络。近几年来使用深度学习方法解决领域自适应问题的文章有很多,都取得了比较好的效果
原创
发布博客 2020.11.03 ·
2440 阅读 ·
2 点赞 ·
0 评论

向量的外积(outer product)与克罗内克积(Kronecker)

向量的外积与克罗内克积外积的定义外积(outer product)是线性代数中的一类重要运算,对于n维和m维的两个向量,其外积为一个n×mn\times mn×m的矩阵。给定两个向量u=(u1,u2,...um)\textbf{u}=(u_1, u_2,...u_m)u=(u1​,u2​,...um​),v=(v1,v2,...vn)\textbf{v}=(v_1,v_2,...v_n)v=(v1​,v2​,...vn​),其外积用u⊗v\textbf{u}\otimes \textbf{v}u⊗v表
原创
发布博客 2020.10.30 ·
5420 阅读 ·
8 点赞 ·
0 评论
加载更多