2.3优化(optim)

本文介绍了优化中的最小二乘法,包括一般最小二乘法和加权最小二乘法。加权最小二乘法通过给予近期数据较大权重,以适应时间序列中数据影响力的不同。迭代重加权最小二乘法(IRLS)用于解决优化问题,特别是当目标函数涉及到p范数时。
摘要由CSDN通过智能技术生成

2.3 优化(optim)

2.3.1&2.3.2 最小二乘法(Least Squares)

加权最小二乘法(WLS(Weighted Least Squares)):

一般最小二乘法将时间序列中的各项数据的重要性同等看待,而事实上时间序列各项数据对未来的影响作用应是不同的。一般来说,近期数据比起远期数据对未来的影响更大。因此比较合理的方法就是使用加权的方法,对近期数据赋以较大的权数,对远期数据则赋以较小的权数。加权最小二乘法采用指数权数Wn-i,0<W<1,加权以后求得的参数估计值应满足:

以直线模型 

以下是使用PaddlePaddle 2.3实现IMDB情感分析的双向LSTM代码: 首先,我们需要安装PaddlePaddle和相关的依赖项: ```python !pip install paddlepaddle==2.3.0 !pip install paddlehub==2.1.0 !pip install paddlenlp==2.0.5 !pip install --upgrade paddlenlp ``` 然后,我们可以导入必要的库和下载IMDB数据集: ```python import paddle import paddle.nn as nn import paddle.optim as optim from paddle.io import DataLoader import paddlenlp as ppnlp from paddlenlp.datasets import load_dataset from paddlenlp.data import Pad, Stack train_ds, test_ds = load_dataset('imdb', splits=('train', 'test')) ``` 接下来,我们需要定义数据预处理器和数据集的转换器: ```python tokenizer = ppnlp.data.Tokenizer() vocab = ppnlp.data.Vocab.from_dict(tokenizer.vocab) trans_fn = lambda x: (tokenizer(x['text'], vocab), x['label']) train_ds = train_ds.map(trans_fn) test_ds = test_ds.map(trans_fn) ``` 接下来,我们将定义一个双向LSTM模型: ```python class BiLSTM(nn.Layer): def __init__(self, vocab_size, num_classes, hidden_size=128, num_layers=2): super(BiLSTM, self).__init__() # 定义嵌入层 self.embedding = nn.Embedding( num_embeddings=vocab_size, embedding_dim=hidden_size) # 定义双向LSTM层 self.bilstm = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers, direction='bidirectional') # 定义全连接层 self.fc = nn.Linear(hidden_size * 2, num_classes) def forward(self, inputs): # 嵌入层输入 embeds = self.embedding(inputs) # 双向LSTM层输入 lstm_out, _ = self.bilstm(embeds) # 取最后一个时间步的输出 last_out = lstm_out[:, -1, :] # 全连接层输出 output = self.fc(last_out) return output ``` 接下来,我们将定义训练和测试函数: ```python def train(model, data_loader, optimizer, criterion): model.train() loss_list = [] acc_list = [] for batch in data_loader: input_ids, labels = batch logits = model(input_ids) loss = criterion(logits, labels) loss.backward() optimizer.step() optimizer.clear_grad() loss_list.append(loss.numpy()) acc_list.append( paddle.metric.accuracy( input=logits, label=labels.reshape([-1, 1])).numpy()) avg_loss = sum(loss_list) / len(loss_list) avg_acc = sum(acc_list) / len(acc_list) return avg_loss, avg_acc def evaluate(model, data_loader, criterion): model.eval() loss_list = [] acc_list = [] for batch in data_loader: input_ids, labels = batch logits = model(input_ids) loss = criterion(logits, labels) loss_list.append(loss.numpy()) acc_list.append( paddle.metric.accuracy( input=logits, label=labels.reshape([-1, 1])).numpy()) avg_loss = sum(loss_list) / len(loss_list) avg_acc = sum(acc_list) / len(acc_list) return avg_loss, avg_acc ``` 现在,我们可以开始训练模型: ```python # 定义超参数 batch_size = 128 learning_rate = 1e-3 epochs = 10 # 定义模型 model = BiLSTM(len(vocab), 2) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(parameters=model.parameters(), learning_rate=learning_rate) # 定义数据加载器 train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=Stack(), num_workers=4) test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False, collate_fn=Stack(), num_workers=4) # 训练模型 for epoch in range(1, epochs+1): train_loss, train_acc = train(model, train_loader, optimizer, criterion) test_loss, test_acc = evaluate(model, test_loader, criterion) print(f'Epoch {epoch}: Train Loss {train_loss:.4f}, Train Acc {train_acc:.4f}, Test Loss {test_loss:.4f}, Test Acc {test_acc:.4f}') ``` 在训练完成后,我们可以使用测试集评估模型的性能: ```python test_loss, test_acc = evaluate(model, test_loader, criterion) print(f'Test Loss {test_loss:.4f}, Test Acc {test_acc:.4f}') ``` 这就是使用PaddlePaddle 2.3实现IMDB情感分析的双向LSTM代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值