【参考资料】
【1】《实变函数与泛函分析基础》
【2】《陶泽轩实分析》
【3】《实变函数与泛函分析》
外测度
定义: 设E为 R n R^n Rn中任一点集,对于每一列覆盖E的开区间 ⋃ i = 1 ∞ I i ⊂ E \bigcup\limits_{i=1}^{\infty}I_i \subset E i=1⋃∞Ii⊂E,作出它的体积总和 u = ∑ i = 1 ∞ ∣ I i ∣ u=\sum\limits_{i=1}^{\infty}|I_i| u=i=1∑∞∣Ii∣,所有一切u组成一个下方有界的数集,它的下确界称为E的勒贝格外侧度,简称L外侧度,记作 m ∗ E m^*E m∗E,即:
m ∗ E = inf E ⊂ ⋃ i = 1 ∞ I i ∑ i = 1 ∞ ∣ I i ∣ m^*E = \inf\limits_{E \subset \bigcup\limits_{i=1}^{\infty}I_i }\sum\limits_{i=1}^{\infty}|I_i| m∗E=E⊂i=1⋃∞Iiinfi=1∑∞∣Ii∣
外侧度具备三条基本性质:
(1)
m
∗
E
≥
0
m^*E \ge 0
m∗E≥0,当E是空集时,
m
∗
E
=
0
m^*E=0
m∗E=0
(2) 设
A
⊂
B
A \subset B
A⊂B,则
m
∗
A
≤
m
∗
B
m^*A \le m^*B
m∗A≤m∗B (单调性)
(3)
m
∗
(
⋃
i
=
1
∞
A
i
)
≤
∑
i
=
1
∞
m
∗
A
i
m^*(\bigcup\limits_{i=1}^{\infty}A_i) \le \sum\limits_{i=1}^{\infty}m^*A_i
m∗(i=1⋃∞Ai)≤i=1∑∞m∗Ai(次可数可加性)
给出(3)的证明如下:
- 对每一个 A i A_i Ai构造其对应的外侧度,即存在对应的开区间 I n , 1 , I n , 2 , … , I n , m I_{n,1}, I_{n, 2}, \dots, I_{n,m} In,1,In,2,…,In,m使得 A n ⊂ ⋃ m = 1 ∞ I n , m A_n \subset \bigcup\limits_{m=1}^{\infty}I_{n,m} An⊂m=1⋃∞In,m,同时满足如下要求: ∑ m = 1 ∞ ∣ I n , m ∣ ≤ m ∗ A n + ϵ 2 n \sum\limits_{m=1}^{\infty}|I_{n,m}| \le m^*A_n + \dfrac{\epsilon}{2^n} m=1∑∞∣In,m∣≤m∗An+2nϵ
- 对所有的A取交集,我们得到
⋃ n = 1 ∞ A n ⊂ ⋃ n , m = 1 ∞ I n , m \bigcup\limits_{n=1}^{\infty}A_n \subset \bigcup\limits_{n,m=1}^{\infty}I_{n,m} n=1⋃∞An⊂n,m=1⋃∞In,m
由外侧度的单调性可知
m ∗ ( ⋃ n = 1 ∞ A n ) ≤ ∑ n , m = 1 ∞ ∣ I n , m ∣ m^*(\bigcup\limits_{n=1}^{\infty}A_n) \le \sum\limits_{n,m=1}^{\infty}|I_{n,m}| m∗(n=1⋃∞An)≤n,m=1∑∞∣In,m∣ - 分析I组成开集的外测度
∑ n , m = 1 ∞ ∣ I n , m ∣ = ∑ n = 1 ∞ ∑ m = 1 ∞ ∣ I n , m ∣ ≤ ∑ n = 1 ∞ ( m ∗ A n + ϵ 2 n ) \sum\limits_{n,m=1}^{\infty}|I_{n,m}|=\sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}|I_{n,m}| \le \sum\limits_{n=1}^{\infty}(m^*A_n + \dfrac{\epsilon}{2^n}) n,m=1∑∞∣In,m∣=n=1∑∞m=1∑∞∣In,m∣≤n=1∑∞(m∗An+2nϵ)
=
∑
n
=
1
∞
m
∗
A
n
+
∑
n
=
1
∞
ϵ
2
n
=\sum\limits_{n=1}^{\infty}m^*A_n + \sum\limits_{n=1}^{\infty}\dfrac{\epsilon}{2^n}
=n=1∑∞m∗An+n=1∑∞2nϵ 由于
∑
n
=
1
∞
1
2
n
\sum\limits_{n=1}^{\infty}\dfrac{1}{2^n}
n=1∑∞2n1收敛于1
=
∑
n
=
1
∞
m
∗
A
n
+
ϵ
=\sum\limits_{n=1}^{\infty}m^*A_n + \epsilon
=n=1∑∞m∗An+ϵ
可测集
由于外侧度不具备可数可加性,因此我们要给出一种集合,使得在这种集合里存在 m ∗ ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ m ∗ A i m^*(\bigcup\limits_{i=1}^{\infty}A_i) = \sum\limits_{i=1}^{\infty}m^*A_i m∗(i=1⋃∞Ai)=i=1∑∞m∗Ai
定义: 设
E
⊂
R
n
E \subset R^n
E⊂Rn,若对任意
T
⊂
R
n
T \subset R^n
T⊂Rn,有
m
∗
(
T
)
=
m
∗
(
T
∩
E
)
+
m
∗
(
T
∩
E
c
)
m^*(T) = m^*(T \cap E) + m^*(T \cap E^c)
m∗(T)=m∗(T∩E)+m∗(T∩Ec),则称E是勒贝格可测集。可测集的全体记作m,称为
R
n
R^n
Rn的可测集类。
于是我们重新描述可数可加性如下:
若 E j ∈ M , j = 1 , 2 , . . . . E_j \in M, j=1,2,.... Ej∈M,j=1,2,....,这里M指可测集类,则 ⋂ n = 1 ∞ E j ∈ M \bigcap\limits_{n=1}^{\infty}E_j \in M n=1⋂∞Ej∈M,若还有 E i ∩ E j = ∅ i ≠ j E_i \cap E_j = \emptyset \quad i \ne j Ei∩Ej=∅i̸=j,则有 m ( ⋃ j = 1 ∞ E j ) = ∑ j = 1 ∞ m ( E j ) m(\bigcup\limits_{j=1}^{\infty}E_j)=\sum\limits_{j=1}^{\infty}m(E_j) m(j=1⋃∞Ej)=j=1∑∞m(Ej)
证明:
设集合
E
1
,
E
2
,
.
.
.
,
E
k
,
.
.
.
.
E_1, E_2, ..., E_k, ....
E1,E2,...,Ek,....是一系列互不相交的可测集,由于
E
1
E_1
E1的可测性,对于任意点集有
m
∗
(
T
∩
(
E
1
∪
E
2
)
)
=
m
∗
(
T
∩
(
E
1
∪
E
2
)
∩
E
1
)
+
m
∗
(
T
∩
(
E
1
∪
E
2
)
∩
E
1
c
)
m^*(T \cap (E_1 \cup E_2)) = m^*(T \cap (E_1 \cup E_2) \cap E_1) + m^*(T \cap (E_1 \cup E_2) \cap E_1^c)
m∗(T∩(E1∪E2))=m∗(T∩(E1∪E2)∩E1)+m∗(T∩(E1∪E2)∩E1c)
因为
E
1
∩
E
2
=
∅
E_1 \cap E_2 = \emptyset
E1∩E2=∅,得到
m
∗
(
T
∩
(
E
1
∪
E
2
)
)
=
m
∗
(
T
∩
E
1
)
+
m
∗
(
T
∩
E
2
)
m^*(T \cap (E_1 \cup E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2)
m∗(T∩(E1∪E2))=m∗(T∩E1)+m∗(T∩E2)
通过归纳法,不断迭代得到
m ∗ ( T ∩ ⋃ j = 1 k E j ) = ∑ j = 1 k m ∗ ( T ∩ E j ) m^*(T \cap \bigcup\limits_{j=1}^{k}E_j)=\sum\limits_{j=1}^{k}m^*(T \cap E_j) m∗(T∩j=1⋃kEj)=j=1∑km∗(T∩Ej)
令 S = ⋃ j = 1 ∞ E j S = \bigcup\limits_{j=1}^{\infty}E_j S=j=1⋃∞Ej, S k = ⋃ j = 1 k E j S_k = \bigcup\limits_{j=1}^{k}E_j Sk=j=1⋃kEj,由于可测集的并还是可测集,因此 S k ∈ M S_k \in M Sk∈M,同样满足等式:
m
∗
(
T
)
=
m
∗
(
T
∩
S
k
)
+
m
∗
(
T
∩
S
k
c
)
m^*(T) = m^*(T \cap S_k) + m^*(T \cap S_k^c)
m∗(T)=m∗(T∩Sk)+m∗(T∩Skc)
=
∑
j
=
1
k
m
∗
(
T
∩
E
j
)
+
m
∗
(
T
∩
S
k
c
)
= \sum\limits_{j=1}^{k}m^*(T \cap E_j) + m^*(T \cap S_k^c)
=j=1∑km∗(T∩Ej)+m∗(T∩Skc)
由于
S
k
⊂
S
S_k \subset S
Sk⊂S 得到
m
∗
(
T
)
≥
∑
j
=
1
k
m
∗
(
T
∩
E
j
)
+
m
∗
(
T
∩
S
c
)
m^*(T) \ge \sum\limits_{j=1}^{k}m^*(T \cap E_j) + m^*(T \cap S^c)
m∗(T)≥j=1∑km∗(T∩Ej)+m∗(T∩Sc)注意:这里是s的补集
m
∗
(
T
)
≥
∑
j
=
1
∞
m
∗
(
T
∩
E
j
)
+
m
∗
(
T
∩
S
c
)
m^*(T) \ge \sum\limits_{j=1}^{\infty}m^*(T \cap E_j) + m^*(T \cap S^c)
m∗(T)≥j=1∑∞m∗(T∩Ej)+m∗(T∩Sc)
≥
m
∗
(
T
∩
S
)
+
m
∗
(
T
∩
S
c
)
\ge m^*(T \cap S) + m^*(T \cap S^c)
≥m∗(T∩S)+m∗(T∩Sc)
将上面式子中 T ∩ S T \cap S T∩S代替T 得到 m ∗ ( T ∩ S ) = ∑ j = 1 ∞ m ∗ ( T ∩ E j ) m^*(T \cap S) = \sum\limits_{j=1}^{\infty}m^*(T \cap E_j) m∗(T∩S)=j=1∑∞m∗(T∩Ej)
PS:这步证明没搞明白,怎么就从不等号变等号了??
将T替换为 R n R^n Rn,证毕。
可测函数
定义: 一个定义在 E ⊂ R 2 E \subset R^2 E⊂R2上的实函数f(x)确定了E的一组子集, { x : x ∈ E , f ( x ) > a } \{x:x \in E, f(x) > a\} {x:x∈E,f(x)>a},记作E[f > a]
定义: 设f(x)是定义在可测集类 E ⊂ R 2 E \subset R^2 E⊂R2上的实函数,如果对于任何有限的实数a,E[f > a]都是可测集,则称f(x)是定义在E上的可测函数。
PS:这里没搞明白两点,为什么要通过逆像来定义?为什么是大于而不是等于?