【数学】积分法推导求圆的周长、弧度

博客介绍了使用微积分思想推导圆的周长的思路,通过圆的参数方程,利用微分思想得出相关导数,再对角度在[0, 2]范围内求定积分。此外,还提及了弧度的定义,即弧长等于半径时弧度值为1,可由周长得出整圆弧度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【圆的周长】

我们知道圆的周长是C=2\pi r那么使用微积分的思想是如何推倒的呢,下面请看思路:

看上图左,表明了两件事情,一个是圆的参数方程,参数为角度θ,其中由图左可以得出圆上的任意一点P(x, y),

其中x=rcos\theta   y=rsin\theta 由图左考虑图中灰色阴影部分,角度增加了\Delta \theta,那么弧长增加了\Delta C,那么针对\Delta \theta\Delta x(右图中红色),\Delta y(右图中蓝色的部分),则近似有:

\Delta C=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} 使用微分的思想则有d C=\sqrt{(d x)^{2}+(d y)^{2}}

我们分别对x=rcos\theta   y=rsin\theta ,求θ对于x的导数,则有:d x=-rsin\theta d \theta d y=rcos\theta d \theta

d C=\sqrt{(rsin\theta )^{2}+(rcos\theta )^{2}}d\theta

我们对θ在[0, 2\pi]的范围内求定积分有:

C=\int_{0}^{2\pi }r\sqrt{(sin\theta) ^{2}+(cos\theta) ^{2}}d\theta=\int_{0}^{2\pi }rd\theta =2\pi r

【弧度】

弧度的定义是弧长等于半径时的弧度值为1,由周长则很容易得出整圆的弧度是2\pi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值