【积分的定义】
本文将详细的描述积分的定义和牛顿.莱布尼茨公式。感谢此文:如何简单地证明、理解牛顿-莱布尼兹公式?
在上面四个图中,我们可以看到,使用等分矩形的形式来计算曲线与坐标轴所围的面积,则当细分到一定程度时,则二者是几乎相等的。
德国数学家黎曼,定义了黎曼和,也即在闭区间上进行分隔,也即
,则
,也即
是分隔的区间中,最大的区间。我们再对于每个取样区间
中,取一点
定义以下黎曼和:
当时,则黎曼和若趋近于某个常数S,则称为该函数
在
上是可积的,积分定为:
其值为S。这就是黎曼积分。也就是我们正常学习的积分。
【牛顿.莱布尼茨公式】
给出积分的定义之后,我们可以使用黎曼和来求积分,事实上在计算机的计算之中就是使用黎曼和来近似的。在数值计算当中,我们使用黎曼和的形式来计算积分并不容易,比如的积分计算按照黎曼和计算很容易,每次都取最大值做高:
取极限,则
上面是属于好求的,倘若那就很难受了。
因此必须要求更好的求积分的方法,否则就难受大了。
牛顿.莱布其茨提出了一个方便快捷的求积分的公式:
设有原函数
,也即
的导数等于
,那么:
下面来证明牛莱公式:
其中最后两步使用到了拉格朗日中值定理。
【拉格朗日中值定理】
在可导可积的区间上,则至少存在一个
使得:
也即:
从直观上理解,若上
连续,则必然存在一点
其切线(斜率)与
与
的连线平行。如上图所示。
【柯西中值定理】
由拉格朗日中值定理,可以引入另一个函数,其在
上连续可导。则:
证明是显而易见的。
还有一个罗尔中值定理,与拉格朗日中值定理,柯西中值定理合称微分三大中值定理。
【罗尔中值定理】
若上
连续,且
=
,则必存在
,使得
,可以将罗尔中值定理看成是拉格郎日中值定理的其中的一种特例。