【数学】使用积分推导圆的面积公式

本文将使用积分公式简明扼要的证明圆的面积公式S=\pi r^2

第一步:划分求微元

将圆心角\theta[0,2\pi ]划分为n份,对应圆周上的点为0,M_0,M_1...M_{i-1},M_i...M_{n-1},2\pi

其中最大的一份圆心角为\lambda =max(\widehat{M_{i-1}M_i}),因为圆心角的弧度值就是其对应的边长的弧长/r,因此\lambda =max(\widehat{M_{i-1}M_i})就代表其圆心角最大。

任取一个划分\widehat{M_{i-1}M_i}求其对应的微元的面积,拿弧长近似为底,r为高,也即图中海绿色的部分

ds\approx \frac{1}{2}\widehat{​{M_{i-1}M_i}}r\approx \frac{1}{2}\theta_i r^2 注意这里使用了圆心角的弧度值就是其对应的边长的弧长/r

第二步:求和求极限

求和 ,注意求和是约等于S\approx \sum_{i=0}^{n}\frac{1}{2}\theta _ir^2

求极限,注意求极限是等于S=\lim_{\lambda \to 0}\sum _{i=0}^{n}\frac{1}{2}\theta _ir^2=\int _{0}^{2\pi } \frac{1}{2}r^2d\theta =\frac{1}{2}\theta r^2|_{0}^{2\pi }=\pi r^2

 

  • 4
    点赞
  • 2
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值