本文将使用积分公式简明扼要的证明圆的面积公式
第一步:划分求微元
将圆心角在
划分为n份,对应圆周上的点为
其中最大的一份圆心角为,因为圆心角的弧度值就是其对应的边长的弧长/r,因此
就代表其圆心角最大。
任取一个划分求其对应的微元的面积,拿弧长近似为底,r为高,也即图中海绿色的部分
注意这里使用了圆心角的弧度值就是其对应的边长的弧长/r。
第二步:求和求极限
求和 ,注意求和是约等于
求极限,注意求极限是等于
本文将使用积分公式简明扼要的证明圆的面积公式
第一步:划分求微元
将圆心角在
划分为n份,对应圆周上的点为
其中最大的一份圆心角为,因为圆心角的弧度值就是其对应的边长的弧长/r,因此
就代表其圆心角最大。
任取一个划分求其对应的微元的面积,拿弧长近似为底,r为高,也即图中海绿色的部分
注意这里使用了圆心角的弧度值就是其对应的边长的弧长/r。
第二步:求和求极限
求和 ,注意求和是约等于
求极限,注意求极限是等于