上一节 红黑树前奏 - 对树的基本理解 我们讲到 二叉搜索树 单向链表的问题,为了解决这个问题,我们引入了平衡二叉搜索树。
所谓平衡二叉搜索树,必须满足 BST 的特性。何为平衡,每个节点的平衡因子的绝对值 <= 1.
那么平衡因子如何计算呢?
大体思路:
- 计算每个节点的高度
高度 = MAX(左子树高度, 右子树高度) + 1
- 每个节点的
左子树和右子树的差
就是 平衡因子
案例:
上图因为插入 2 元素,导致了整棵树不平衡。此时,为了达到平衡状态,我们需要进行左旋和右旋的操作。
为了方便理解,下面举得例子都会比较简单。
右旋案例:
如上图,当插入 16 元素时,整棵树处于非平衡状态。这时,需要进行右旋。
大家可以想象一下,将 17 向上提,20 下沉作为 17 的右子节点。左旋同理,这里就不提供图了。
理解了左旋和右旋,也看了右旋的基础例子,咋们再来看一个左旋进阶案