0 引出
数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在 回顾:二叉搜索树
- 左子树全部为空,从形式上看,更像一个单链表.
- 插入速度没有影响
- 查询速度明显降低(因为需要依次比较), 不能发挥 BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
- 解决方案-平衡二叉树(AVL)
1 平衡二叉树
- 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树, 可以保证查询效率较高。
- 具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等
- 如何保证在创建二叉排序树的过程中,一直都满足平衡二叉树呢?
- 在添加节点add方法的末尾判断(也可以说在非叶子节点处):如果左右子树高度差>1,那么考虑左旋/右旋/双旋
//添加节点
public void add(BNode bnode) {
if (bnode == null) {
return;
}
if (bnode.value < this.value) {
if (this.left == null) {
this.left = bnode;
} else {
this.left.add(bnode);
}
} else {
if (this.right == null) {
this.right = bnode;
} else {
this.right.add(bnode);
}
}
//考虑左旋
// if (rightTreeHeight() - leftTreeHeight() > 1) {
// leftRotate();
// }
//考虑右旋
// if (leftTreeHeight()-rightTreeHeight() > 1) {
// rightRotate();
// }
//考虑双旋(单独的左旋/右旋可能不能解决问题)
if (rightTreeHeight() - leftTreeHeight() > 1) {
if (right != null && right.leftTreeHeight() > right.rightTreeHeight()) {
right.rightRotate();
}
leftRotate();
return;//省的走下面代码,影响效率(因为涉及递归调用)
}
if (leftTreeHeight()-rightTreeHeight() > 1) {
if (left != null && left.leftTreeHeight() < left.rightTreeHeight()) {
left.leftRotate();
}
rightRotate();
}
}
//返回当前节点的高度
public int getHeight() {
return Math.max(left == null ? 0 : left.getHeight(), right == null ? 0 : right.getHeight())+1;
}
//左子树高度
public int leftTreeHeight() {
if (left == null) {
return 0;
} else {
return left.getHeight();
}
}
//右子树高度
public int rightTreeHeight() {
if (right == null) {
return 0;
} else {
return right.getHeight();
}
}
2 左旋
- 主要操作就是改变左旋节点4和其右子节点6的指针指向
- 首先拷贝4,新的4左指向3,右指向5
- 原来的4改为6,左指向新的4,右指向7
- 原来的6由于没有被指向,GC回收
- 左旋完成
//左旋
public void leftRotate() {
BNode newNode = new BNode(value);
newNode.left = this.left;
newNode.right = this.right.left;
this.setValue(right.value);
this.setLeft(newNode);
this.setRight(this.right.right);
}
3 右旋
- 属于左旋的镜像操作,改变右旋节点10和其左子节点8的指针指向
- 首先拷贝10,新的10左指向9,右指向12
- 原来的10改为8,左指向7,右指向新的10
- 原来的8由于没有被指向,GC回收
- 右旋完成
//右旋
public void rightRotate() {
BNode newNode = new BNode(value);
newNode.right = this.right;
newNode.left = this.left.right;
this.setValue(left.value);
this.setRight(newNode);
this.setLeft(this.left.left);
}
4 双旋
-
问题:前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成平衡二叉树的转换。比如数列
int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到,并没有转成 AVL 树.
int[] arr = {2,1,6,5,7,3}; // 运行原来的代码可以看到,并没有转成 AVL 树
-
解决如下:
-
当符合右旋转的条件时,如果它的左子树的右子树高度大于它的左子树的高度,先对当前这个结点的左节点进行左旋转,再对当前结点进行右旋转的操作即可
-
当符合左旋转的条件时,如果它的右子树的左子树高度大于它的右子树的高度,先对当前这个结点的右节点进行右旋转,再对当前结点进行左旋转的操作即可
//添加节点
public void add(BNode bnode) {
if (bnode == null) {
return;
}
if (bnode.value < this.value) {
if (this.left == null) {
this.left = bnode;
} else {
this.left.add(bnode);
}
} else {
if (this.right == null) {
this.right = bnode;
} else {
this.right.add(bnode);
}
}
//考虑左旋
// if (rightTreeHeight() - leftTreeHeight() > 1) {
// leftRotate();
// }
//考虑右旋
// if (leftTreeHeight()-rightTreeHeight() > 1) {
// rightRotate();
// }
//考虑双旋(单独的左旋/右旋可能不能解决问题)
if (rightTreeHeight() - leftTreeHeight() > 1) {
if (right != null && right.leftTreeHeight() > right.rightTreeHeight()) {
right.rightRotate();
}
leftRotate();
return;//省的走下面代码,影响效率(因为涉及递归调用)
}
if (leftTreeHeight()-rightTreeHeight() > 1) {
if (left != null && left.leftTreeHeight() < left.rightTreeHeight()) {
left.leftRotate();
}
rightRotate();
}
}
5 完整AVL树代码
//平衡二叉树
public class App05_AVLTree {
public static void main(String[] args) {
AVLTree tree = new AVLTree();
// int[] arr = {4,3,6,5,7,8};
// int[] arr = {10,12, 8, 9, 7, 6};
// int[] arr = {10, 11, 7, 6, 8, 9};
int[] arr = {2,1,6,5,7,3};
for (int i : arr) {
tree.add(new BNode(i));
}
tree.infixOrder();
System.out.println("根高度:"+tree.getRoot().getHeight());
System.out.println("左子树高度:"+tree.getRoot().leftTreeHeight());
System.out.println("右子树高度:"+tree.getRoot().rightTreeHeight());
}
}
class AVLTree {
private BNode root;
public BNode getRoot() {
return root;
}
//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("树为空!!!");
}
}
//添加节点
public void add(BNode nd) {
if (root == null) {
root = nd;
} else {
root.add(nd);
}
}
//找到删除节点及其父节点
public BNode search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
public BNode searchParent(int value) {
if (root == null) {
return null;
} else {
if (root.getLeft() == null && root.getRight() == null) {
return null;
} else {
return root.searchParent(value);
}
}
}
//删除节点
public void delNode(int value) {
if (root == null) {
return;
} else {
BNode target = search(value);
BNode parent = searchParent(value);//为空则只能是删根节点
//有的删才行
if (target != null) {
if (parent != null) {
//删叶子节点
if (target.getLeft() == null && target.getRight() == null) {
if (parent.getLeft()!=null&&parent.getLeft().getValue() == value) {
parent.setLeft(null);
} else {
parent.setRight(null);
}
//删有双子树的节点
} else if (target.getLeft() != null && target.getRight() != null) {
//target为左子树
if (parent.getLeft().getValue() == value) {
int max = delLeftTreeMax(target);
target.setValue(max);
//target为右子树
} else {
int min = delRightTreeMin(target);
target.setValue(min);
}
//删有单子树的节点
} else {
//4种可能,左左,左右,右左,右右
if (parent.getLeft()!=null&& parent.getLeft().getValue() == value && target.getLeft() != null) {
parent.setLeft(target.getLeft());
} else if (parent.getLeft() != null && parent.getLeft().getValue() == value && target.getRight() != null) {
parent.setLeft(target.getRight());
} else if (parent.getRight().getValue() == value && target.getLeft() != null) {
parent.setRight(target.getLeft());
} else {
parent.setRight(target.getRight());
}
}
} else {//没有父节点,说明就是删root,因为删除的节点存在
//叶子
if (root.getLeft() == null && root.getRight() == null) {
root = null;
//有双子树
} else if (root.getLeft() != null && root.getRight() != null) {
//用左子树最大或右子树最小都可以
root.setValue(delLeftTreeMax(root.getLeft()));
//有单子树
} else {
if (root.getRight() != null) {
root = root.getRight();
} else {
root = root.getLeft();
}
}
}
} else {
System.out.println("删除的节点不存在!!!");
}
}
}
//删左子树,最大值
public int delLeftTreeMax(BNode nd) {
BNode temp = nd;
while (true) {
if (temp.getRight() == null) {
break;
}
temp = temp.getRight();
}
delNode(temp.getValue());
return temp.getValue();
}
//删右子树,最小值
public int delRightTreeMin(BNode nd) {
BNode temp = nd;
while (true) {
if (temp.getLeft() == null) {
break;
}
temp = temp.getLeft();
}
delNode(temp.getValue());
return temp.getValue();
}
}
class BNode {
private int value;
private BNode left;
private BNode right;
public BNode(int value) {
this.value = value;
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
public BNode getLeft() {
return left;
}
public void setLeft(BNode left) {
this.left = left;
}
public BNode getRight() {
return right;
}
public void setRight(BNode right) {
this.right = right;
}
@Override
public String toString() {
return "BNode [value=" + value + "]";
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
//添加节点
public void add(BNode bnode) {
if (bnode == null) {
return;
}
if (bnode.value < this.value) {
if (this.left == null) {
this.left = bnode;
} else {
this.left.add(bnode);
}
} else {
if (this.right == null) {
this.right = bnode;
} else {
this.right.add(bnode);
}
}
//考虑左旋
// if (rightTreeHeight() - leftTreeHeight() > 1) {
// leftRotate();
// }
//考虑右旋
// if (leftTreeHeight()-rightTreeHeight() > 1) {
// rightRotate();
// }
//考虑双旋(单独的左旋/右旋可能不能解决问题)
if (rightTreeHeight() - leftTreeHeight() > 1) {
if (right != null && right.leftTreeHeight() > right.rightTreeHeight()) {
right.rightRotate();
}
leftRotate();
return;//省的走下面代码,影响效率(因为涉及递归调用)
}
if (leftTreeHeight()-rightTreeHeight() > 1) {
if (left != null && left.leftTreeHeight() < left.rightTreeHeight()) {
left.leftRotate();
}
rightRotate();
}
}
//查找要删除节点
public BNode search(int value) {
if (this.value == value) {
return this;
} else if (value < this.value) {//这里对于==的处理与add方法保持一致
if (this.left != null) {
return this.left.search(value);
}
} else {
if (this.right != null) {
return this.right.search(value);
}
}
return null;
}
//查找要删除的节点的父节点
public BNode searchParent(int value) {
if ((this.left != null && this.left.value == value) ||
this.right != null && this.right.value == value) {
return this;
} else {
if (value < this.value && this.left != null) {
return this.left.searchParent(value);
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value);
} else {
return null;
}
}
}
//返回当前节点的高度
public int getHeight() {
return Math.max(left == null ? 0 : left.getHeight(), right == null ? 0 : right.getHeight())+1;
}
//左子树高度
public int leftTreeHeight() {
if (left == null) {
return 0;
} else {
return left.getHeight();
}
}
//右子树高度
public int rightTreeHeight() {
if (right == null) {
return 0;
} else {
return right.getHeight();
}
}
//左旋
public void leftRotate() {
BNode newNode = new BNode(value);
newNode.left = this.left;
newNode.right = this.right.left;
this.setValue(right.value);
this.setLeft(newNode);
this.setRight(this.right.right);
}
//右旋
public void rightRotate() {
BNode newNode = new BNode(value);
newNode.right = this.right;
newNode.left = this.left.right;
this.setValue(left.value);
this.setRight(newNode);
this.setLeft(this.left.left);
}
}