题目描述
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向……” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
输入输出格式
输入格式:
文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
输出格式:
文件中仅包含一个整数ans,代表篱笆的最短长度。
分析:
首先分析题目,建篱笆的本质就是使羊和狼之间没有通路(0可以为狼和羊两者的领地),而最小割是使源点和汇点之间没有通路。故可以借助网络流的最小割来完成。
表示因为数组开小了而WA,边数组要开到10倍。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cstdlib>
using namespace std;
const int maxn=110;
const int INF=1e9;
int a[maxn][maxn];
int n,m;
int s,t;
int to[maxn*maxn*10],Next[maxn*maxn*10],Begin[maxn*maxn],w[maxn*maxn*10],e;
int dis[maxn*maxn],gap[maxn*maxn],id[maxn][maxn];
int d[4][2]={0,1,0,-1,1,0,-1,0};
void add(int x,int y,int z){
to[++e]=y;
Next[e]=Begin[x];
Begin[x]=e;
w[e]=z;
if(z!=0) add(y,x,0);
}
int isap(int x,int flow){
if(x==t) return flow;
int res=flow,v;
for(int i=Begin[x];i;i=Next[i])if(w[i]>0 && dis[x]==dis[v=to[i]]+1){
int Min=isap(v,min(res,w[i]));
w[i]-=Min;
w[i^1]+=Min;
res-=Min;
if(!res) return flow;
}
if(!--gap[dis[x]]) dis[s]=t;
++gap[++dis[x]];
return flow-res;
}
int main(){
int cnt;
e=1,cnt=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);id[i][j]=++cnt;
}
s=n*m+1;t=s+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(a[i][j]==1) add(s,id[i][j],INF);
else if(a[i][j]==2){
add(id[i][j],t,INF);continue;
}
for(int k=0;k<4;k++){
int x=i+d[k][0],y=j+d[k][1];
if(x<1 || x>n || y<1 || y>m) continue;
if(a[x][y]!=1) add(id[i][j],id[x][y],1);
}
}
int maxflow=0;
for(gap[0]=t;dis[s]<t;){
maxflow+=isap(s,INF);
}
printf("%d",maxflow);
return 0;
}
^_^