题意:给一个n个元素的数组,其中0可以变成任意整数,求最长上升子序列。
分析:比赛的时候一直想dp状态,却一直都想不到,其实和另外一题挺像的:要求改变最少个数,使得整个数组严格递增。其实就是将自身和序列要求的结合在一起。比如说这一题,0能变成任意整数,那么0肯定是最厉害的,所有0都要在最长上升子序列里是能够达到的,那么我们只需要将0对其他元素的影响减去即可(a[i]减去i之前的0的个数),然后在做普通的最长上升子序列即可。
代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=100010;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=1000000007;
const int MAX=2000000010;
const ll INF=1ll<<55;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned long long ull;
int d[N];
int main()
{
int a,i,k,g,n,t,ca,l,r,mid;
scanf("%d", &t);
for (ca=1;ca<=t;ca++) {
scanf("%d", &n);
k=1;g=0;d[1]=-MAX;
for (i=1;i<=n;i++) {
scanf("%d", &a);
if (a==0) g++;
else {
a-=g;
if (a>d[k]) d[++k]=a;
else {
l=1;r=k;mid=(l+r)>>1;
while (l+1<r)
if (d[mid]<a) { l=mid;mid=(l+r)>>1; }
else { r=mid;mid=(l+r)>>1; }
d[r]=a;
}
}
}
printf("Case #%d: %d\n", ca, k+g-1);
}
return 0;
}