Tree Cutting
题意:有一个连通图,n个点,n-1条边(就是一棵树),每个节点有一个权值,一棵树的价值是其节点(包括本身及其子节点)的权值的异或和;求价值为[0, m)的树有多少颗?(这里所谓的树其实是原连通图的任意子图);
思路:最先想到树形DP;
令:dp[u][i]表示u节点为根的价值为i的树的数量;
dp[u][j^k]=dp[u][j^k]+dp[u][j]*dp[son][k];也就是:
dp[u][j^k]+;
的复杂度是O(m^2); 直接算就超时了;这里就用到了FWT,将复杂度优化为O(nmlogm);
至于FWT是什么,我也讲不清楚,大家可以自行百度,在下太弱了,讲不明白了(其实是自己也没明白);
#include <bits/stdc++.h>
using namespace std;
vector<int> vec[1100];
typedef long long ll;
const ll mod=1e9+7;
const ll ret=(mod+1)/2;
ll val[1100], ans[1100], dp[1100][1100], temp[1100];
int n, m;
void FWT(ll *a, int n){
for(int i=1; i<n; i<<=1){
for(int p1=i<<1, j=0; j<n; j+=p1){
for(int k=0; k<i; k++){
ll x=a[j+k];
ll y=a[j+k+i];
a[j+k]=(x+y)%mod;
a[j+k+i]=(x-y+mod)%mod;
}
}
}
}
void UFWT(ll *a, int n){
for(int i=1; i<n; i<<=1){
for(int p1=i<<1, j=0; j<n; j+=p1){
for(int k=0; k<i; k++){
ll x=a[j+k];
ll y=a[i+k+j];
a[j+k]=(x+y)%mod*ret%mod;
a[j+k+i]=((x-y)*ret%mod+mod)%mod;
}
}
}
}
void solve(ll *a, ll *b, int n){
FWT(a, n);
FWT(b, n);
for(int i=0; i<n; i++){
a[i]=a[i]*b[i]%mod;
}
UFWT(a, n);
}
void dfs(int u, int fa){
dp[u][val[u]]=1;
for(int i=0; i<vec[u].size(); i++){
int v=vec[u][i];
if(v==fa) continue;
dfs(v, u);
for(int j=0; j<=m; j++)
temp[j]=dp[u][j];
solve(dp[u], dp[v], m);
for(int j=0; j<=m; j++)
dp[u][j]=(temp[j]+dp[u][j])%mod;
}
for(int i=0; i<=m; i++){
ans[i]=(ans[i]+dp[u][i])%mod;
}
}
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d%d", &n, &m);
for(int i=1; i<=n; i++){
scanf("%lld", &val[i]);
vec[i].clear();
}
memset(ans, 0, sizeof(ans));
memset(dp, 0, sizeof(dp));
int u, v;
for(int i=1; i<n; i++){
scanf("%d%d", &u, &v);
vec[u].push_back(v);
vec[v].push_back(u);
}
dfs(1, 1);
for(int i=0; i<m; i++){
printf("%lld%c", ans[i], (i==m-1)?'\n':' ');
}
}
return 0;
}
还有一个点分治解法还没学会,等学会再补