iOS 内存管理机制

这个是个人一些小的体悟。
在object-c里,内存管理机制其实就是引用计数的方式。
有ARC模式和非ARC模式。
在非arc模式中:
当你在项目中alloc retian new copy 一个对象的时,这个时候这个对象的引用计数就会+1,当你用完的时候你应该把这个对象release或者autorelease,如果不及时release,会容易产生内存泄露。

在arc模式中:系统会自动释放。

iOS的内存管理机制就是 谁创建 谁释放。

xcode项目中会有ARC跟非arc混合模式,
如果你的项目中使用非arc模式,为arc模式中的文件添加-fobjc-arc 标签
如果你的项目中使用的是arc模式。那么为非arc模式的文件添加 -fno-objc-arc标签
添加标签的方式:
1.打开xcode –taggets—>build phases—>compile sources
2.双击对应的.m文件
3.添加标签-fobjc-arc/-fno-objc-arc。点击done保存。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值