Energy Density Conservation Equation

Thermal energy evolution equation
∂ U ∂ t = − ∇ ⋅ q − ∇ ⋅ ( U v ) − ∇ ⋅ ( P ⋅ v ) + v ⋅ ( ∇ ⋅ P ) \frac{\partial U}{\partial t}=-\bm{\nabla \cdot q}-\bm{\nabla \cdot} (U\bm{v})-\bm{\nabla \cdot }(\bm{{\rm P}\cdot v}) + \bm{v \cdot}(\bm{\nabla \cdot {\rm P}}) tU=q(Uv)(Pv)+v(P)

U U U is the thermal energy density. t t t is the time. q \bm{q} q is the heat flux vector. v \bm{v} v is the bulk velocity. P \bm{\rm P} P is the pressure tensor.

Continuity equation
∂ n ∂ t + ∇ ⋅ ( n v ) = 0 \frac{\partial n}{\partial t} + \bm{\nabla \cdot} (n \bm{v}) = 0 tn+(nv)=0

Where n n n is the number density of a species.

Because
U = 1 2 ( P x x + P y y + P z z ) U=\frac{1}{2}(P_{xx}+P_{yy}+P_{zz}) U=21(Pxx+Pyy+Pzz)

We consider the kinetic temperature T T T
T = 1 3 P x x + P y y + P z z n T=\frac{1}{3}\frac{P_{xx}+P_{yy}+P_{zz}}{n} T=31nPxx+Pyy+Pzz

Then, the relationship between thermal energy U U U and temperature T T T
U = 3 2 n T U=\frac{3}{2}nT U=23nT

Then
∂ U ∂ t = ∂ ∂ t ( 3 2 n T ) = 3 2 T ∂ n ∂ t + 3 2 n ∂ T ∂ t = 3 2 n ∂ T ∂ t − 3 2 T ∇ ⋅ ( n v ) \frac{\partial U}{\partial t} = \frac{\partial}{\partial t}(\frac{3}{2}nT)=\frac{3}{2}T\frac{\partial n}{\partial t} + \frac{3}{2}n\frac{\partial T}{\partial t}=\frac{3}{2}n\frac{\partial T}{\partial t}-\frac{3}{2}T\bm{\nabla \cdot}(n \bm{v}) tU=t(23nT)=23Ttn+23ntT=23ntT23T(nv)

And
∇ ⋅ ( P ⋅ v ) = v ⋅ ( ∇ ⋅ P ) + ( P ⋅ ∇ ) ⋅ v \bm{\nabla \cdot }(\bm{{\rm P} \cdot v})=\bm{v \cdot } (\bm{\nabla \cdot {\rm P}})+(\bm{{\rm P}\cdot \nabla})\bm{\cdot v} (Pv)=v(P)+(P)v

Then
∂ U ∂ t = − ∇ ⋅ q − ∇ ⋅ ( U v ) − ( P ⋅ ∇ ) ⋅ v \frac{\partial U}{\partial t}=-\bm{\nabla \cdot q}-\bm{\nabla \cdot} (U\bm{v})-(\bm{{\rm P}\cdot \nabla})\bm{\cdot v} tU=q(Uv)(P)v

And
∇ ⋅ ( U v ) = ∇ ⋅ ( 3 2 n T v ) = 3 2 T ∇ ⋅ ( n v ) + 3 2 n v ⋅ ∇ T \bm{\nabla \cdot} (U\bm{v})=\bm{\nabla \cdot} (\frac{3}{2}nT\bm{v})=\frac{3}{2}T\bm{\nabla \cdot}(n\bm{v})+\frac{3}{2}n\bm{v \cdot \nabla}T (Uv)=(23nTv)=23T(nv)+23nvT

Then
3 2 n ∂ T ∂ t − 3 2 T ∇ ⋅ ( n v ) = − ∇ ⋅ q − 3 2 T ∇ ⋅ ( n v ) − 3 2 n v ⋅ ∇ T − ( P ⋅ ∇ ) ⋅ v \frac{3}{2}n\frac{\partial T}{\partial t}-\frac{3}{2}T\bm{\nabla \cdot}(n \bm{v}) = -\bm{\nabla \cdot q} - \frac{3}{2}T\bm{\nabla \cdot}(n\bm{v}) - \frac{3}{2}n\bm{v \cdot \nabla}T - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v} 23ntT23T(nv)=q23T(nv)23nvT(P)v

3 2 n ∂ T ∂ t = − ∇ ⋅ q − 3 2 n v ⋅ ∇ T − ( P ⋅ ∇ ) ⋅ v \frac{3}{2}n\frac{\partial T}{\partial t} = -\bm{\nabla \cdot q} - \frac{3}{2}n\bm{v \cdot \nabla}T - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v} 23ntT=q23nvT(P)v

Then
3 2 n ( ∂ T ∂ t + v ⋅ ∇ T ) = − ∇ ⋅ q − ( P ⋅ ∇ ) ⋅ v \frac{3}{2}n(\frac{\partial T}{\partial t} + \bm{v \cdot \nabla}T) = -\bm{\nabla \cdot q} - (\bm{{\rm P}\cdot \nabla})\bm{\cdot v} 23n(tT+vT)=q(P)v

Let
P = P − p I + p I = P ′ + p I \bm{{\rm P=P}}-p\bm{{\rm I}}+p\bm{{\rm I}} = \bm{{\rm P'}}+p\bm{{\rm I}} P=PpI+pI=P+pI

Where I \bm{\rm I} I is the unit tensor, and p p p is the scalar pressure.

Then
3 2 n ( ∂ T ∂ t + v ⋅ ∇ T ) = − ∇ ⋅ q − ( P ′ ⋅ ∇ ) ⋅ v − p ( I ⋅ ∇ ) ⋅ v \frac{3}{2}n(\frac{\partial T}{\partial t} + \bm{v \cdot \nabla}T) = -\bm{\nabla \cdot q} - (\bm{{\rm P'}\cdot \nabla})\bm{\cdot v} - p(\bm{{\rm I}\cdot \nabla})\bm{\cdot v} 23n(tT+vT)=q(P)vp(I)v

Finally, the energy density conservation equation is
3 2 n ( ∂ T ∂ t + v ⋅ ∇ T ) + p ∇ ⋅ v = − ∇ ⋅ q − ( P ′ ⋅ ∇ ) ⋅ v \frac{3}{2}n (\frac{\partial T}{\partial t}+\bm{v} \bm{\cdot \nabla}T)+p\bm{\nabla \cdot v}=-\bm{\nabla \cdot q}-(\bm{{\rm P'} \cdot \nabla})\bm{\cdot v} 23n(tT+vT)+pv=q(P)v

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值