自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 CtenterPoint部署

以上的参考中我主要参考了第一个博客,其他几个如果有需要也都可以拿来作参考.最后python tools/demo.py能够跑通就可以.

2023-08-06 16:59:07 326

原创 在Xavier上部署CUDA-PointPillars

首先下载pytorch v1.10.0的whl文件,我最开始下载的是v1.8.0版本的pytorch,但是在最后导出onnx模型的时候报torch中onnx的错,把pytorch的版本换成v1.10.0就好了。的数据集,这个数据集是新加的,需要安装av2库才能够读取这个数据集,但是av2不支持python 3.6,python3.8就可以,就非常的扯,所以就下载0.5.0版本的OpenPCDet。在安装的过程中可能会报错,一般是缺少某些编译库,在网上搜索一下报错信息,然后把缺少的依赖库安装上就可以。

2023-04-30 11:14:30 1655 3

原创 清华镜像源地址

【代码】清华镜像源地址。

2023-04-17 09:11:58 914

原创 Ubuntu20.04系统重装

【代码】Ubuntu20.04系统重装。

2023-04-16 15:45:02 800

原创 MMDetection3D使用学习(mmdet v1.1 rc)

本文所观看视频教程的mmdet3d版本为v1.0.0 rc5,而我使用的是v1.1.0 rc3。v1.0.0 rc5的一些实现可以参考我的另一篇博客基于MMDet3D的pointpillars和centernet推理(mmdet3d v1.0 rc)或者官方文档。本文会记录学习中遇到的问题。视频链接支持点云、视觉、多模态检测算法,支持室内、室外场景的数据集MMDetection3D目前有两个稳定的版本(总共有三个版本)2018-10 发布2022-02 v1.0 rc (统一的坐标系。

2023-04-15 22:22:51 4751 9

原创 基于MMDet3D的pointpillars和centernet推理(mmdet3d v1.0 rc)

MMDetection3D 分别用and实现了分布式训练和非分布式训练。所有的输出(日志文件和模型权重文件)都会被保存到工作目录下,通过配置文件里的work_dir指定。evaluation = dict(interval=12) # 每12个周期评估一次模型重要:配置文件中的默认学习率对应8块显卡,配置文件名里有具体的批量大小,比如’2x8’表示一共8块显卡,每块显卡2个样本。根据,当你使用不同数量的显卡或每块显卡有不同数量的图像时,需要依批量大小按比例调整学习率。

2023-04-12 22:58:23 1614 4

原创 PointPillars论文阅读

在本文中,我们考虑将点云编码为适合下游检测的格式的问题。最近的文献提出了两种编码器;固定编码器往往很快,但牺牲了准确性,而从数据中学习的编码器更准确,但更慢。在这项工作中,我们提出了PointPillars,这是一种新颖的编码器,它利用PointNets来学习以垂直列(柱子)组织的点云表示。虽然编码的特征可以与任何标准的2D卷积检测体系结构一起使用,但我们进一步提出了一个精益下游网络。大量的实验表明,point柱子在速度和准确性方面都大大优于以前的编码器。

2023-04-10 16:38:24 278 1

原创 CenterPoint论文阅读

三维物体通常表示为点云中的三维box。这种表示模仿了经过充分研究的基于图像的2D的bbox检测,但带来了额外的挑战。3D世界中的对象不遵循任何特定的方向,基于box的检测器很难枚举所有的方向或为旋转的对象拟合一个轴对齐的包围框。在本文中,我们建议将3D对象表示、检测和跟踪为点。我们的框架CenterPoint首先使用关键点检测器检测对象的中心,然后回归到其他属性,包括3D大小、3D方向和速度。在第二阶段,它使用对象上的附加点特征来改进这些估计。在CenterPoint中,3D对象跟踪简化为贪婪的近点匹配。

2023-04-09 20:54:43 1107 1

原创 FastBEV复现 Ubuntu

安装完成CUDA10.2之后,在conda中新建一个虚拟环境,安装1.6的pytorch,CUDA版本太高的话安装不了太低版本的pytorch,所以需要安装10.2版本的CUDA。原作者训练的数据为完整的nuscences数据集,项目里面提供的pkl文件对应真个nuscences数据集,而对于个人学习来说,一般只能使用mini数据集。因为过高的pytorch版本编译不了mmdet3d,所以需要安装较低版本pytorch,在这里我安装的是1.6.0版本的。安装的过程中会有很多包的版本问题,慢慢安装就行。

2023-03-24 22:23:02 2010 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除