动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是”1 X Y”,表示X和Y是同类。
第二种说法是”2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
Sample Output
3
解题思路:该题因为是食物链,判断话真假时除了前两种情况,第三种情况应当从他们的根是否相同这两种情况分别判断。若根相同则证明两种生物在同一个集合,然后判断他们之间的关系,是否为真。如果不在一个集合就更新他们之间的亲缘关系(与父亲的关系以及与根的关系)。
每个节点对应的 re[]值记录他与根节点的关系(偏移分量):0:同类, 1:被父亲节点吃, 2: 吃父亲节点。初始条件fa[i]就是并查集一般的初始条件,父点节于等自己。根据偏移分量可以得到x的当前集合根节点rootx,y的当前集合根节点rooty,x->y的偏移值为d-1。
由于初始的时候父节点是自己,当然自己跟自己的关系肯定是同类,也就是re[i]=0。
根据一个大神的博客得到三者之间x与根节点r的关系更新的方法,就是说根据父节点和子的关系以及根与父的关系得到更新re[]的方法:t = fa[v]; re[v] = (re[v] + re[t])%3;
解释一下re[ty] = (re[a] + d-1 + (3-re[b]))%3;更新b根与a根之间的关系的式子
re[i]表示re[i]->i的偏移分量,则想得到rootx->rooty:
rootx->rooty = rootx->x + x->y + y->rooty = (re[x] + (d-1) + (3 - re[y])%3,取余3的原因是保证关系保证在三者之间。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int fa[50010],re[50010];
void init(int n)
{
for(int i=0; i<=n; i++)
{
fa[i] = i;
re[i] = 0;//根点节到点节的关系
}
}
int getf(int v)
{
if(v == fa[v])
return v;
else
{
int t = fa[v];
fa[v] = getf(fa[v]);
re[v] = (re[v] + re[t])%3;//根据三角形和向量偏移量可得
return fa[v];
}
}
int main()
{
int n,m,d,a,b;
scanf("%d %d",&n,&m);
int count = 0;
init(n);
while(m--)
{
scanf("%d %d %d",&d,&a,&b);
if(a > n||b > n)
{
count++;
continue;
}
if(d == 2&& a==b)
{
count++;
continue;
}
int tx = getf(a);
int ty = getf(b);
if(tx == ty)//属于同一个子集
{
if(d == 1&&re[a]!=re[b])//如果a,b是同类,那么他们相对根点节的关系应该是一样的
count++;
if(d == 2&&re[a]!=(re[b]+2)%3)//如果不是同类,加入a与b的关系之后,a相对根点节的关系(a根->b,b->a(即3-(d-1)=2).即a根->a)应该是不变的
//这里d=2表示a - b = 2-1=1;而b->a=3-(a->b)=3-1=2;
count++;
}
else
{
fa[ty] = tx;
re[ty] = (re[a] + d-1 + (3-re[b]))%3;
}
}
printf("%d\n",count);
return 0;
}