二叉树的遍历

1. 前序遍历
2. 中序遍历
3. 后序遍历
4. 层序遍历

这三种方式分别可以用递归和非递归的方式实现
前序遍历:遍历的前中后表示的是访问根节点的顺序,前就是先访问根节点然后左右节点,遍历的时候左结点可能是一颗左子树,这颗左子树也要按照根左右的顺序遍历,同理右结点。我们可以通过下图看的更清楚黑色箭头表示的是遍历顺序ABDECFG
在这里插入图片描述
递归方式:

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }
 }

public static void preOrder(TreeNode tree) {
    if (tree == null){
    	return;
    }
    System.out.println(tree.val);
    preOrder(tree.left);
    preOrder(tree.right);
}

非递归方式:可以使用一个栈解决问题,
1.先将根结点入栈,然后根结点出栈,访问结点。
2.将根节点的右子树左子树入栈。
3.栈不空,栈顶元素出栈,访问结点,该结点的右子树,左子树入栈。
4.重复3,直到栈为空。

    public void preOrder(TreeNode tree) {
        Stack<TreeNode> stack = new Stack<>();
        stack.push(tree);
        while (!stack.empty()) {
            TreeNode t1 = stack.pop();
            System.out.println(t1.val);
            if (t1.right != null) {
                stack.push(t1.right);
            }
            if (t1.left != null) {
                stack.push(t1.left);
            }
        }
    }

中序遍历:遍历先访问左结点然后访问根结点然后再访问右结点,遍历的时候左结点可能是一颗左子树,这颗左子树也要按照左根右的顺序遍历,同理右结点。看下图我们可以很清楚的看到,遍历顺序为DBEADCG
在这里插入图片描述
递归方式:

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }
 }

public static void inorderTraversal(TreeNode tree) {
    if (tree == null){
    	return;
    }
    inorderTraversal(tree.left);
    System.out.println(tree.val);
    inorderTraversal(tree.right);
}

非递归方式:使用栈解决
1.若有左子树,将左子树的左结点全部入栈,直到到达最左侧结点。
2.最左侧结点出栈,访问最左侧结点。
3.看看该结点有没有右子树有的话重复1,2。没有的话继续出栈,直到栈空

    public void inOrderTraversal(TreeNode tree) {
        Stack<TreeNode> stack = new Stack<>();
        while (tree != null || !stack.isEmpty()) {
            while (tree != null) {
                stack.push(tree);
                tree = tree.left;
            }
            if (!stack.isEmpty()) {
                tree = stack.pop();
                System.out.println(tree.val);
                tree = tree.right;
            }
        }
    }

后序遍历:遍历先访问左结点然后访问右结点然后再访问根结点,遍历的时候左结点可能是一颗左子树,这颗左子树也要按照左右根的顺序遍历,同理右结点。看下图我们可以很清楚的看到,遍历顺序为DEBFGCA
在这里插入图片描述
递归方式:

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }
 }

public static void postorderTraversal(TreeNode tree) {
    if (tree == null){
    	return;
    }
    postorderTraversal(tree.left);
    postorderTraversal(tree.right);
    System.out.println(tree.val);
}

非递归方式:前序遍历是根左右,我们可以通过求根右左,然后将顺序逆转,就是后序遍历的方法。
1.根结点入栈。
2.栈不为空出栈,如果该结点都存在左右结点,将该结点的左结点,右节点分别入栈。
3.重复2。
4.逆序输出遍历的顺序。

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }
 }
   public void postorderTraversal(TreeNode tree) {
        Stack<TreeNode> stack = new Stack<>();
        List<Integer> res = new ArrayList<>();
        if (tree == null)
            return;
        stack.push(tree);
        while (!stack.empty()) {
            TreeNode t1 = stack.pop();
            res.add(t1.val);
            if (t1.left != null) {
                stack.push(t1.left);
            }
            if (t1.right != null) {
                stack.push(t1.right);
            }
        }
        Collections.reverse(res);
        for(Integer num:res){
        	System.out.println(num);
        }
    }


层序遍历:就是一层一层的遍历,下图可以清楚的表示:ABCDEFG,这个实现的话我们可以借助队列来实现。
1.根结点如队列。
2.队列不为空,出队,如果该结点左右结点不为空,入队。
3.重复2,直至队列为空。

在这里插入图片描述

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }
 }
public void levelOrder(TreeNode root) {
    //边界条件判断
    if (root == null)
        return;
    //队列
    Queue<TreeNode> queue = new LinkedList<>();
    //根节点入队
    queue.add(root);
    //如果队列不为空就继续循环
    while (!queue.isEmpty()) {
    	//出队
        TreeNode node = queue.poll();
        System.out.println(node.val);
        //左右子节点如果不为空就加入到队列中
        if (node.left != null)
        	queue.add(node.left);
        if (node.right != null)
            queue.add(node.right);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值