时间复杂度和空间复杂度

时间复杂度

·如何评价一个算法的优劣,更简洁,更快捷?
·首先肯定不是更简洁,例如用递归实现斐波那契数列:

 long long Fib(int N)
 {
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
 }

用迭代实现斐波那契数列:

int main()
{
	long lnog m,n,k;
	m=n=k=1;
	int N=0;
	scanf("%d",&N);
	if(N<3)
		N=1;
	else
		{
			for(int i=3;i<=N;i++)
			{
				n=m;
				m=k;
				k=m+n
			}	
		}
	return 0;
}

显然用递归实现更加简洁,但我们也知道用递归实现斐波那契数列运算会非常臃肿、慢,并且有可能栈溢出。
·实际上,评价一个算法的优劣主要看它的时间复杂度和空间复杂度,最主要是看时间复杂度。
·时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
·时间复杂度是一个函数,,算法中的基本操作的执行次数,为算法的时间复杂度。

大O渐进表示法

·不同函数之间执行次数千差万别,我们不可能详细去计算每个算法的精确执行次数,那样效率太低了。这里采用大O渐进表示法来衡量算法的时间复杂度。
先看如下一个例子:

void func1(int n)
{
	for(int i=0;i<n;i++)
	printf(" ");
	printf(" ");
}
void func2(int n)
{
	for(int i=0;i<n;i++)
	printf(" ");
	for(int i=0;i<n;i++)
	printf(" ");
}

·在func1函数中,其基本操作printf(" "),总共执行了n+1次,那么它的时间复杂度就是O(n+1)吗?
——当然不是,这里我们运用数学分析的极限思想,当n取任意大时,n+1和n任意接近,也就是n+1的极限为n,也就是说这里起主导作用的是n,所以该函数的时间复杂度为O(n)。
·再看func2,其执行次数为2n,所以它的时间复杂度就是O(2n)了吗?当然不是,先前我们说了大O渐进表示法是为了更简便地表示时间复杂度,如果连系数都要加上那也算不得简便。而且n和2n显然是同阶的,也就是说n的极限与2n的极限的比值为常数,所以2n=O(n)
·那么继续分析下列函数:

void func3(int n)
{
	for(int i=0;i<n*n;i++)
	printf(" ");
	for(int i=0;i<n;i++)
	printf(" ");
}

·如上func3的执行次数为nn+n,所以它的时间复杂度为O(nn+n)咯!还是不对!前面我们说了,只取影响最大的一项,这里显然是n*n的影响较大,所以该函数的时间复杂度为O(n2
·还需要注意的是,大O渐进表示法其实是一个保守的估计方式,如果一个算法会出现不同情况的时间复杂度,我们取最差情况下的时间复杂度。
`我们学习了大O渐进表示法,还需要多多练习,了解一些常见情况。先举例一些常见的时间复杂度。

时间复杂度判断

void Func1(int N)
 {
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
 
    int M = 10;
    while (M--)
    {
        ++count;
    }
 
    printf("%d\n", count);
 }

·上述函数的基本操作的执行次数为N+10,所以时间复杂度为O(N)。
2.

void Func3(int N, int M)
 {
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
 
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
 }

·上述函数的执行次数为N+M。分为三种情况,当N和M接近时,时间复杂度为O(N+M);当N远大于M时,时间复杂度为O(N);当M远大于N时,时间复杂度为O(M)。
3.

void Func4(int N)
 {
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
 }

·上述函数的执行次数为100,执行次数为常数,则时间复杂度为O(1).
4.

const char * strchr ( const char * str, int character );

上述函数执行次数显然就是字符串str的长度N次,所以时间复杂度为O(N)。
5.

void BubbleSort(int* a, int n)
 {
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
 
        if (exchange == 0)
            break;
    }
 }

·上述函数是一个经典的冒泡排序,最坏情况下执行次数为n-1+n-2+……+1,即n(n-1)/2,则时间复杂度为O(N2
6.

int BinarySearch(int* a, int n, int x)
 {
    assert(a);
 
    int begin = 0;
    int end = n-1;
    // [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid-1;
        else
            return mid;
    }
 
    return -1;
 }

·上述函数的是一个简单的二分查找,当有N个变量时候,最糟糕的情况函数要执行log2N,当对数的底数为2时,我们可以省略底数,时间复杂度简写为O(logN)
7.

long long Fac(size_t N)
 {
    if(0 == N)
        return 1;
    
    return Fac(N-1)*N;
 }

·一个简单的阶乘一次递归函数,时间复杂度为O(N);
8.

long long Fib(size_t N)
 {
    if(N < 3)
        return 1;
    
    return Fib(N-1) + Fib(N-2);
 }

·我们的老熟人斐波那契数列,先看第N项数,分解成N-1和N-2,N-1又分为N-2和N-3,N-2分为N-3和N-4,那么第N项需要执行的次数约为2N-1,则第N-1项执行次数为2N-2,依此类推。总的执行次数为1(2N-1)/(2-1),即2N-1次,则时间复杂度为O(2N)。显然这是个效率非常低下的算法。

空间复杂度

·空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
由于硬件技术的进步,现在的内存空间已经是足够大了,往往我们计算算法的效率时,也很少考虑空间复杂度,更多是考虑时间复杂度,而且空间复杂度的大O渐进表示法的估算也更加简单。

空间复杂度的判断

void BubbleSort(int* a, int n)
 { 
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
 }

·上述函数只申请了一个临时变量int exchange,所以空间复杂度为O(1).
2.

long long* Fibonacci(size_t n)
 {
 if(n==0)
 return NULL;
  long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
    {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
 return fibArray;
 }

`上述函数总共申请了n+1个long long大小的空间,所以空间复杂度为O(N)
3.

long long Fac(size_t N)
 {
 if(N == 0)
 return 1;
 return Fac(N-1)*N;
 }

上述函数调用了N个fac函数,并且调用时前一个函数空间没有释放,所以时间复杂度为O(N)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值