算法笔记练习 题解合集
题目
题目描述
哈夫曼树,第一行输入一个数n,表示叶结点的个数。需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出所有结点的值与权值的乘积之和。
输入
输入有多组数据。
每组第一行输入一个数n,接着输入n个叶节点(叶节点权值不超过100,2<=n<=1000)。
输出
输出权值。
样例输入
2
2 8
3
5 11 30
样例输出
10
62
思路
代码主体框架用的是这道题的:问题 B: 算法6-13:自顶向下的赫夫曼编码。
讲解思路之前先明确两个词的定义:
- 结点的值:指的是输入数据的时候得到的叶结点的值;
- 结点的权值:指的是这个结点到根结点的距离,且根结点的权值为 0。
下文中这两个词不会混用,可以严格按照上面的定义理解。
相比问题 B 的代码需要做一些改动:
- 问题 B 的代码在遍历的时候为了方便,直接把结点中代表结点的值的成员
w
归零,用作一个指路的变量,而这个题的w
一直到最后都是有用的,遍历的时候必须保留,所以加入新的成员path
用来指路,w
全程都代表结点的值; - 本题要求获得所有叶结点的权值和其值乘积的和,加入新的成员
depth
代表结点的权值。 - 遍历的时候每当向左走或者向右走之前,为左孩子或者右孩子结点计算其
depth
,大小即为父结点的depth
加 1; - 统计答案的地方应该出现在原本生成
huffmanCode
的地方。
具体实现参考下方代码,从 50 行开始,huffmanTree
数组已生成完毕,开始统计答案。
代码
#include <iostream>
#include <vector>
#include <algorithm>
struct Node {
int w, parent, lchild, rchild, path, depth;
};
void findMinTwo(std::vector<Node>& huffman, int& min1, int& min2) {
int i = 1, w1, w2;
while (huffman[i++].parent != 0)
continue;
min1 = i - 1;
while (huffman[i++].parent != 0)
continue;
min2 = i - 1;
for ( ; i < huffman.size(); ++i) {
if (huffman[i].parent == 0 && huffman[i].w < std::max(huffman[min1].w, huffman[min2].w)) {
if (huffman[min1].w != huffman[min2].w)
(huffman[min1].w > huffman[min2].w ? min1 : min2) = i;
else
(min1 > min2 ? min1 : min2) = i;
}
}
if (min1 > min2)
std::swap(min1, min2);
}
int main() {
int n, input, min1, min2;
std::vector<Node> huffmanTree;
while (scanf("%d", &n) != EOF) {
if (n == 1) {
scanf("%d", &input);
printf("1\n");
continue;
}
huffmanTree.clear();
huffmanTree.resize(n + 1);
huffmanTree[0] = {0, 0, 0, 0, 0, 0};
for (int i = 1; i <= n; ++i) {
scanf("%d", &input);
huffmanTree[i] = {input, 0, 0, 0, 0, 0};
}
for (int i = n + 1; i <= 2 * n - 1; ++i) {
findMinTwo(huffmanTree, min1, min2);
huffmanTree[min1].parent = huffmanTree[min2].parent = i;
huffmanTree.push_back( {huffmanTree[min1].w + huffmanTree[min2].w, 0, min1, min2, 0, 0} );
}
int c = 2 * n - 1, sum = 0;
while (c) {
if (huffmanTree[c].path == 0) {
huffmanTree[c].path = 1;
if (huffmanTree[c].lchild != 0) {
huffmanTree[huffmanTree[c].lchild].depth = huffmanTree[c].depth + 1;
c = huffmanTree[c].lchild;
} else if (huffmanTree[c].rchild == 0) {
sum += huffmanTree[c].depth * huffmanTree[c].w;
}
} else if (huffmanTree[c].path == 1) {
huffmanTree[c].path = 2;
if (huffmanTree[c].rchild != 0) {
huffmanTree[huffmanTree[c].rchild].depth = huffmanTree[c].depth + 1;
c = huffmanTree[c].rchild;
}
} else {
huffmanTree[c].path = 0;
c = huffmanTree[c].parent;
}
}
printf("%d\n", sum);
}
return 0;
}